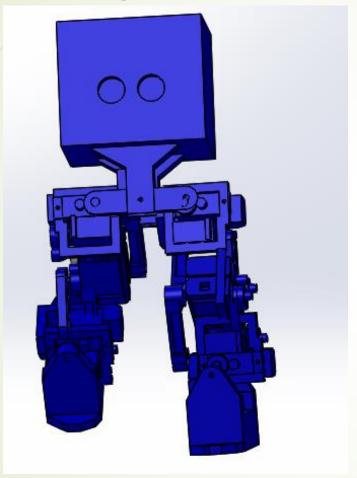
California State University Long Beach College of Engineering Department of Electrical Engineering

µBiPedProject - CDR

Project Manager & Control and Image Processing:

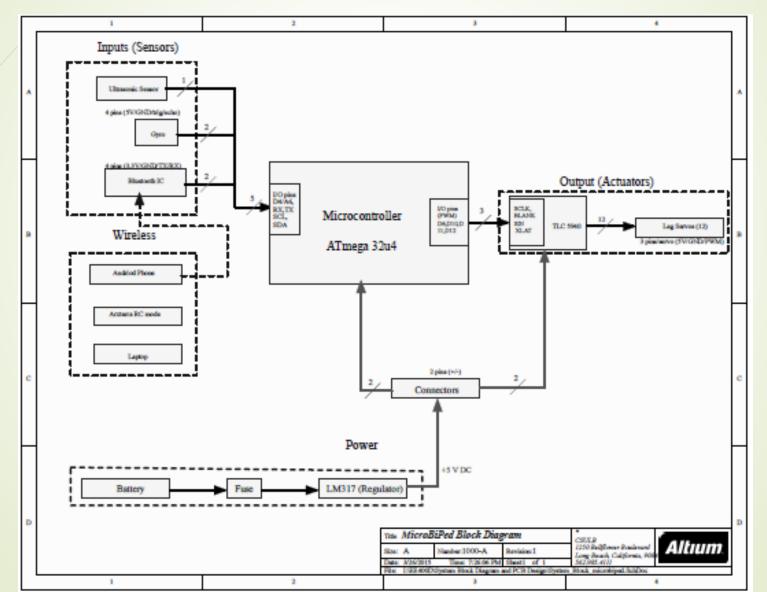
Tate McGeary


- Coding on for µBiPed
- Help were necessary
- Systems and Test Engineering: Mesfer Aldosari
 - Prototyping
 - Troubleshooting
 - Arxterra
 - Battery choice

- Sensors, Actuators, and Power: Ameen Alattas
 - Checking components
 - How to integrate the system
 - Power budget
- 3D Printing and Manufacturing: Yakub Dure
 - Designing components
 - Manufacturing components
 - Material decision

Mission Objective

The project mission is inspired by the BiPed designed by Jonathan Dowdall of Project Biped, completed in previous semesters of EE 400D. The goal is to scale down the BiPed design by changing standard servos to micro servos to yield the μBiPed, which will result in design changes to the robot. The robot must be able to communicate and be controlled by the AxterraTM application. The final deliverable of this project is to have the μBiPed maneuver through an obstacle course, while being able to resist outside disturbances.


Design of µBiPed

Differences:

Height from Shoulder: 165.862 mm Uses micro-servos 23x12.5x28 mm

System Block diagram

PolyFuse

Operations

- operation voltage
- holding current
- trip current

Features

Operations obtain from uk.farnell.co.uk

- Over current protection
- Low base resistance
- Short time to trip
- Lifetime up to 10 times longer
- Internationally standardized and approved

Trade off Study (batteries)

Nickel-Metal hydride (NiMH) obtained from batteryspace.com

- Wide operating temperature range about -10 to 65 C
- Safer than LiPO
- High self discharge

2- disadvantages

Capacity 200 mA

Lithium Polymer (LiPo) obtained form batteryspace.com

1- Advantages:

- More efficient than NiMH
- has a higher specific energy than NiMH
- High self discharge
- High energy density

2- disadvantages

Expensive

NiMH Cylindrical battery

Features:

- Provide enough voltage 9 v
- Light its weight is 43 g
- Small 48 mm
- Capacity 250 mAh
- High rate discharge
- Self discharge

Battery Life = Battery Capacity in Milli amps per hour / Loc [Battery capacity(mAh)/device consuption(mA)]*0.7 (250/750)*0.7= 0.23

0.23*2*60=28minutes

So 28 minutes is our battery last long.

Operations obtain from batteryspace.com

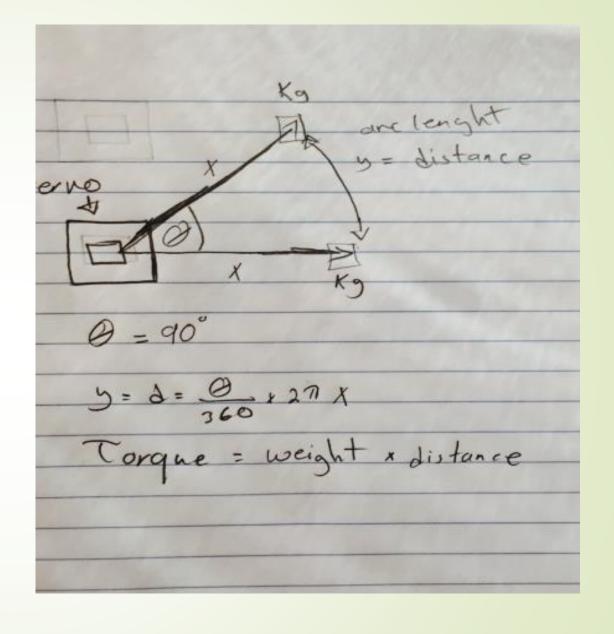
LM317 Voltage Regulator

Advantages:

- Internal short current circuit limiting constant with temperature.
- Output current in excess of 1.5 A
- Eliminates stocking many fixed voltages
- Output adjustable voltage between 1.2 V up to 37 V
- internal thermal overload voltage
- Protect components

obtained from reuk.co.uk

Torque Calculations

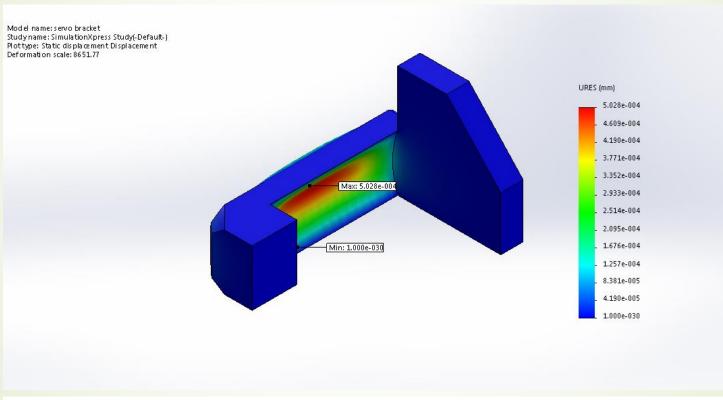

C=2 pi X

D = theta/360 *2 pi x

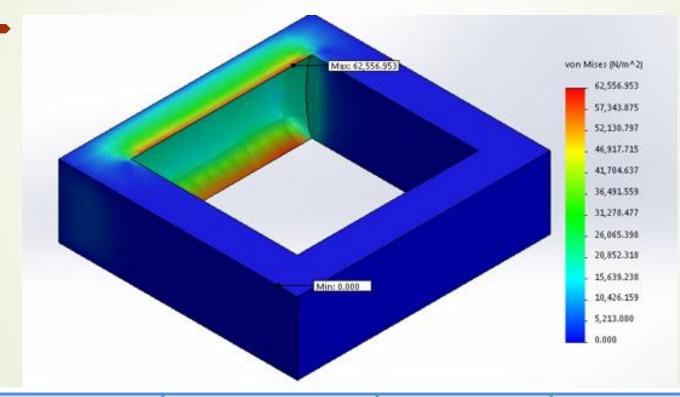
X(cm)=5,10,15,20,25

Y is the Distance (m)

Torques= weight * distance*9.8



Experiment calculations:


Weight (kg)	X(cm)	Y(m)	Torque (n/m)
0.1	5	0.078	0.076
0.25	5	0.078	0.19
0.5	5	0.078	0.38
1.0	5	0.078	0.76
1.5	5	0.078	1.15
2.0	5	0.078	1.53
0.1	10	0.157	0.154
0.25	10	0.157	0.385
0.5	10	0.157	0.78
1.0	10	0.157	1.54
1.5	10	0.157	2.31
2.0	10	0.157	3.1
0.1	15	0.235	0.23
0.25	15	0.235	0.575
0.5	15	0.235	1.15
1.0	15	0.235	2.3
1.5	15	0.235	3.45
2.0	15	0.235	4.6
0.1	20	0.314	0.31
0.25	20	0.314	0.77
0.5	20	0.314	1.54
1.0	20	0.314	3.1
1.5	20	0.314	4.62
2.0	20	0.314	6.2
0.1	25	0.392	0.38
0.25	25	0.392	0.96
0.5	25	0.392	1.9
1.0	25	0.392	3.8
1.5	25	0.392	5.76
2.0	25	0.392	7.6

Stress Testing

Name	Type	Min	Max
Stress	VON: von <u>Mises</u> Stress	3.67665e-006 N/m^2 Node: 10843	231671 N/m^2 Node: 10315

Name	Туре	Min	Max
Stress	VON: von <u>Mises</u> Stress	3.52872e-008 N/m^2 Node: 12252	62557 N/m^2 Node: 11842

Comparison of materials

ABS

- Criss-crossed structure
- Made of styrene and acrylonitrile
- Bends
- More suitable for making bracelets or other flex plastics

PLA

- Can be homogeneous or heterogenous
- Made in a matrix form
- Sturdier
 - Better for load based parts
- Less likely to bend

Standard Plastic

- Can be linear, branched or network structures
 - Provides stronger item
- Drawback: have to use in molding process
 - Longer to obtain parts

Pros and Cons 3-D printing vs Molding

3-D Printing

- Advantages:
 - Easier to produce
 - Provides wide variety of customization
 - Cheaper
- Disadvantages:
 - Material used not strong
 - Limited materials
 - Temp. fluctuation can deform
 - Limited in size

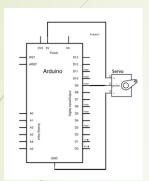
Molding

- Advantages:
 - Much strong than 3D printed material
 - Can last a long time
 - Not effected by temp. fluctuation
- Disadvantages:
 - More expensive
 - Time consuming to produce
 - Harder to customize

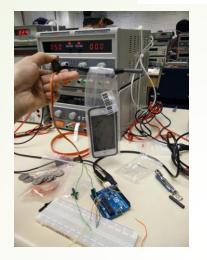
Material and method chosen:

- PLA plastic is favored
- 3-D printing
- ABS can be too flexible
 - Means the robot can collapse on its own weight
- Standard Plastic
 - Too time consuming because of molding
 - More expensive

MG90S Test



Obtained from http://www.nacrc.com/


Table 1A

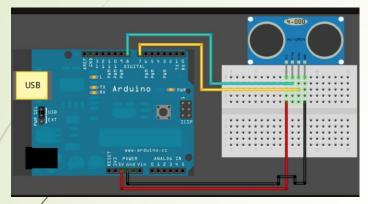
Maight (a) Current (m)

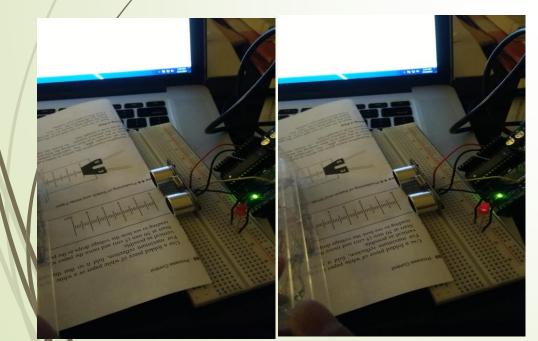
• Set-up:

Obtained from http://www.grduino.cc

Current (mA)
236
300
372
400
448 (stall)

Table 1B


- Actual voltage and current have been calculated
- Testing the maximum load the servo could carry
 - Table 1a add weight to servo
 - Table 1b adding 8cm object and attaching weight to it
- Code was taken from http://arduino.cc/en/Tutorial/sweep


Weight (g)	Current (mA)
70	256
90	324
120	388
148	448 (stall)

HC-SR04 Test

Set-up: result:

Obtained from arduinobasics.blogspot.com

Test

Range: 2cm - 396 (4m)

• Sense an obstacle within 5 cm

Measuring angle 15 degree

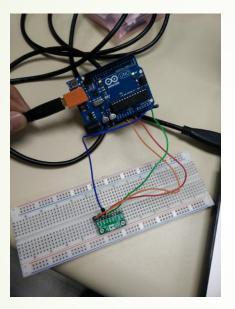
Operating current is 15mA

Code taken: (See appendix D)

http://treehouseprojects.ca/ultrasonict

utorial/

L3GD20 Test

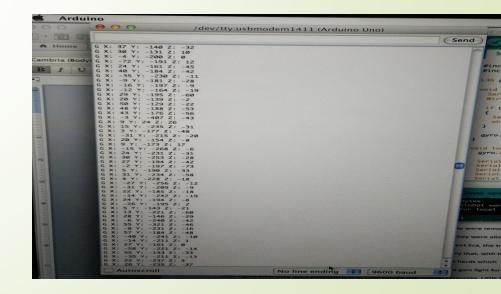

Set-up:

Arduino Micro

aaiiio			
Arduino		L3G board	
5V	->	VIN	
GND	->	GND	
2	->	SDA	
3	->	SCL	

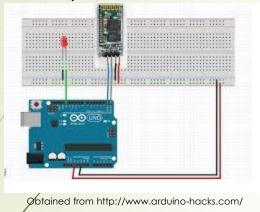
Arduino Uno (up to R2), Duemilanove

Arduino		L3G board
5V	->	VIN
GND	->	GND
A4	->	SDA
A5	->	SCL



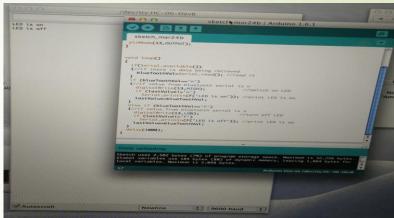
Test Result:

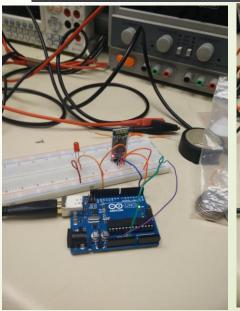
- Axis Counter-clockwise resulting in positive value, and clockwise resulting in negative value
- Code Could be found at: https://github.com/pololu/l3g-arduino

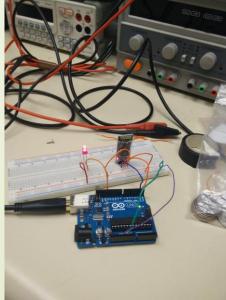

L3GD20 in balance system:

• The gyroscope will provide the current orientation of the BiPed to the microcontroller, which in return will be able to keep the BiPed standing in its natural standing position.

HC-06 Test


Set_up:



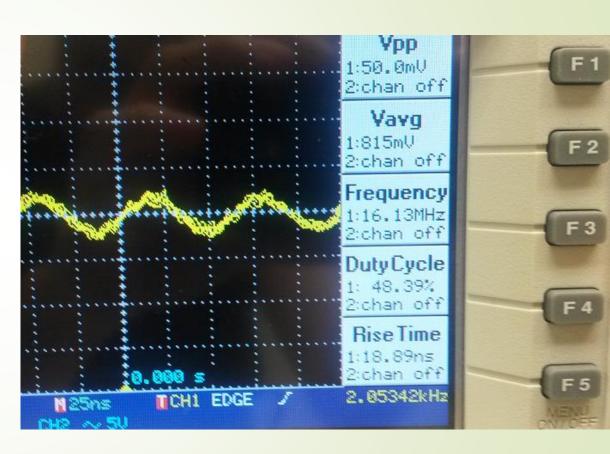

Note:

- Password:1234
- Disconect whatever pin is connected RXD pin_0 in the arduino before uploading the code
 - Code could be found

Test result:

Microcontroller

Crumbuino Mega


- ► ATmega 2560
- Enough PWM pins
- Enough resources for code

Arduino Micro

- ATmega 32u4
- Not enough PWM pins
 - Only 7
- Not enough resources for code

Problems with Crumbuino Mega

- Get a timeout error in Arduino IDE
 - Error means anything can be wrong
 - EG:
 - Bad Bootloader
 - Bad components
 - Bad BAUD rate
- Problem with board?
 - Checked continuity of components
 - Checked crystal
 - Checked Vbus

Obtained from GwInstek GDS-2062

Solutions:

Crumbuino Mega

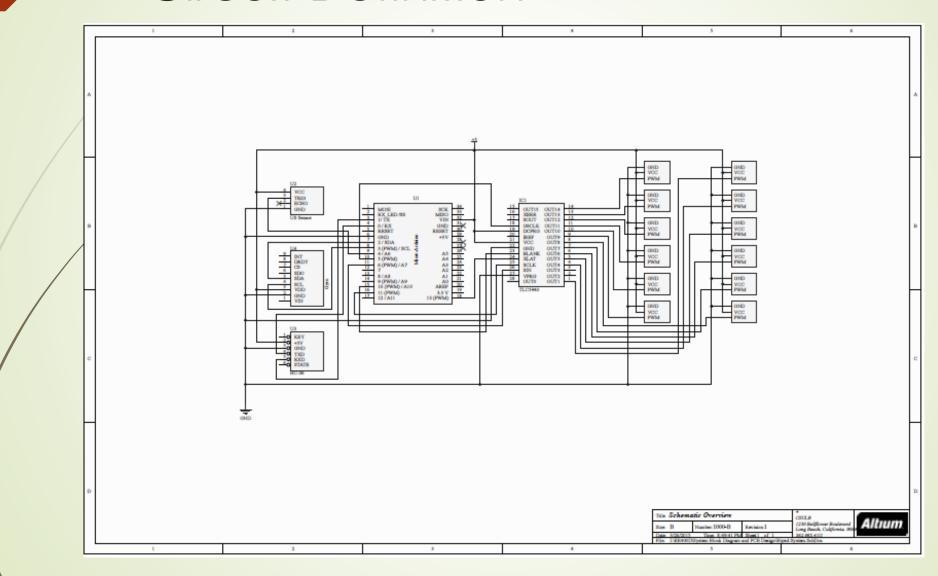
- Order new one
- Reload bootloader

Arduino Micro

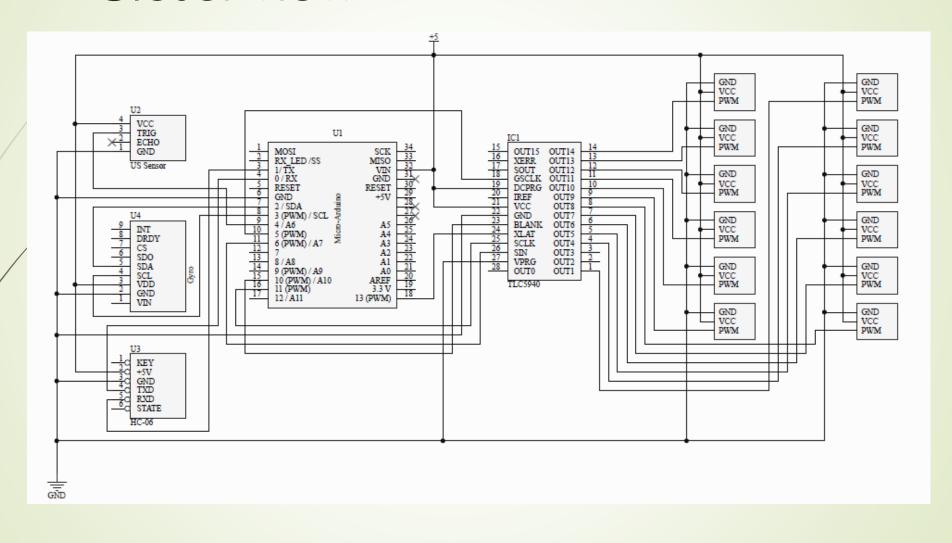
- Most resources used in:
 - Applycalibrate()
 - Calibrate servos on separate program
 - Store tables in FLASH
- PWM pins
 - Use TLC5960 or 74VHC164

Interface Definition

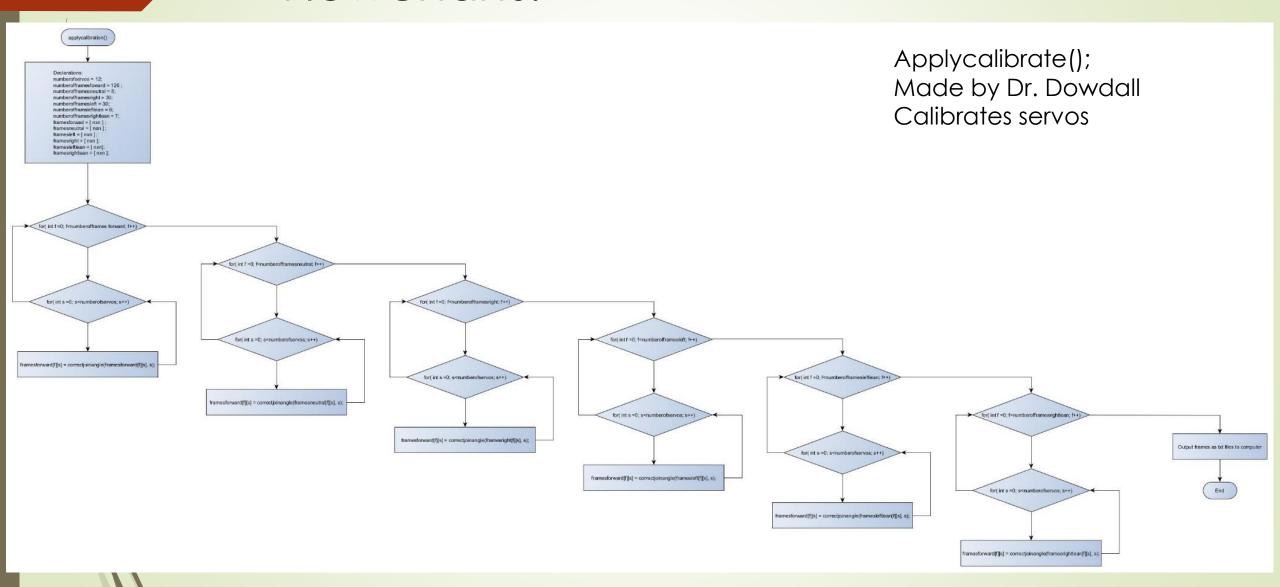
	ARDUINO MICRO PIN CONNECTIONS HC-SR04			1		TLC5940		
						PIH	STMBOL	FUNCTION
PIH	STMBOL	FUNCTION	PI		FUNCTION	 ↓	OUT1	Constant Current Output
1	MOSI	MASTEROUT SLAVEIN	┥ ├─		VOLTAGESOURCE	∦I ː	OUT2	
2	SS	SLAVE SELECT			TRIGGER INPUT	_		Constant Current Output
3	TX	TRANSMIT/DIGITAL PIN1	 3		ECHO OUTPUT	┩┠—╩—	OUT3	Constant Current Output
5	RX DCT	RECEIVE / DIGITAL PIN 0 RESET	-	GND	GROUND	<u> </u>	OUT4	Constant Current Output
	RST		+	LIC OC BLU	ETOOTH NO CLACE OF	- 5	OUT5	Constant Current Output
6	GND	GROUND	-	HC-06 BLU	ETOOTH V2 CLASS 2.0	6	OUT6	Constant Current Output
7	D2	DIGITAL PIN 27 SERIAL DATA LINE						
*	D3	DIGITAL PIN3/SERIAL CLOCK LINE/PWM	PI		FUNCTION]	OUT7	Conrtant Current Output
9	D4	DIGITAL PIN 47 ANALOG 6	┥ ├─	VCC	VOTLAGE SOURCE		OUT8	Constant Current Output
10	D5	DIGITAL PIN 5			GROUND	- 9	OUT9	Constant Current Output
11	D6	DIGITAL PIN 6 / ANALOG 7 / PWM	 3		TRANSMITE	10	OUT10	Constant Current Output
12	D7	DIGITAL PIN 7	┥ └-	RXD	RECEIVE	41 11	OUT11	Constant Current Output
13	D\$	DIGITAL PINS / ANALOGS	1			_		·
14	D9	DIGITAL PIN 9 / ANALOG 9 / PWM	1		120020	12	OUT12	Constant Current Output
15	D10	DIGITAL PIN 10 / ANALOG 10 / PWM			L3GD20	13	OUT13	Constant Current Output
16	D11	DIGITAL PIN 11 / PWM				14	OUT14	Constant Current Output
17	D12	DIGITAL PIN 12 / ANALOG 11	PI		FUNCTION	15	0UT15	Constant Current Output
18	D13	DIGITAL PIN 13 / PWM	 		GORUND	16	XERR	
19	3V3	+3.3V			VOLTAGESOURCE	_		Error autput
20	REF	ANALOGREFERENCE	- -		SERIAL CLOCK LINE	<u> 17 - 17 - </u>	SOUT	Sorial data putput
21	A0	ANALOG0	┨ ├─		SERIAL DATA LINE	- 1 8	GSCLK	Reference clack for grayscale PWM
22	A1 A2	ANALOG1 ANALOG2	 		SERIAL DATA OUTPUT SPIENABLE	19	DCPRG	Switch DC datainput
24	A3	ANALOG3	1 ;		PROGRAMMABLE INTERRUPT	20	IREF	Reference current terminal
25	A4	ANALOG4	1 📑		PROGRAMMABLEINTERRUPT	21	VCC	
26	A5	ANALOG5			The same in the control of			Pawarsupply valtaga
27	NC	NOT CONNECTED			SERVO	22	GND	Ground
			+		SERVO	23	BLANK	Blank all autputs
28	NC 5V	HOT CONNECTED +5.0 V	WIRE C	OL STHBOL	FUNCTION	24	XLAT	Lovol triggorod latch signal
30	RST	RESET	ORA		PWMINPUT	25	SCLK	Sprial datashift alpak
31	GND	GROUND	BRO		GROUND	26	SIN	
32	VIN	VOLTAGEIN (7-12 V)	RE		VOLTAGE SOURCE		ī	Sprial data input
33	MISO	MASTER IN SLAVE OUT	1 <u> </u>	- "	* . * *	-4 27	VPRG	Multifunction input. (GND, VCC)
34	SCK	SYNCHRONOUS CLOCK				28	OUTO	Constant Current Output

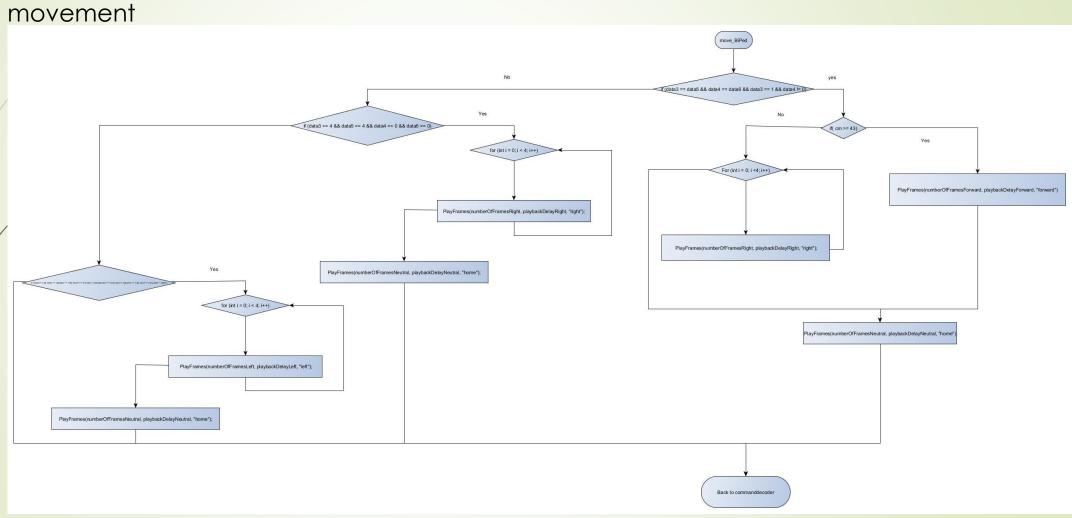

Pin connections

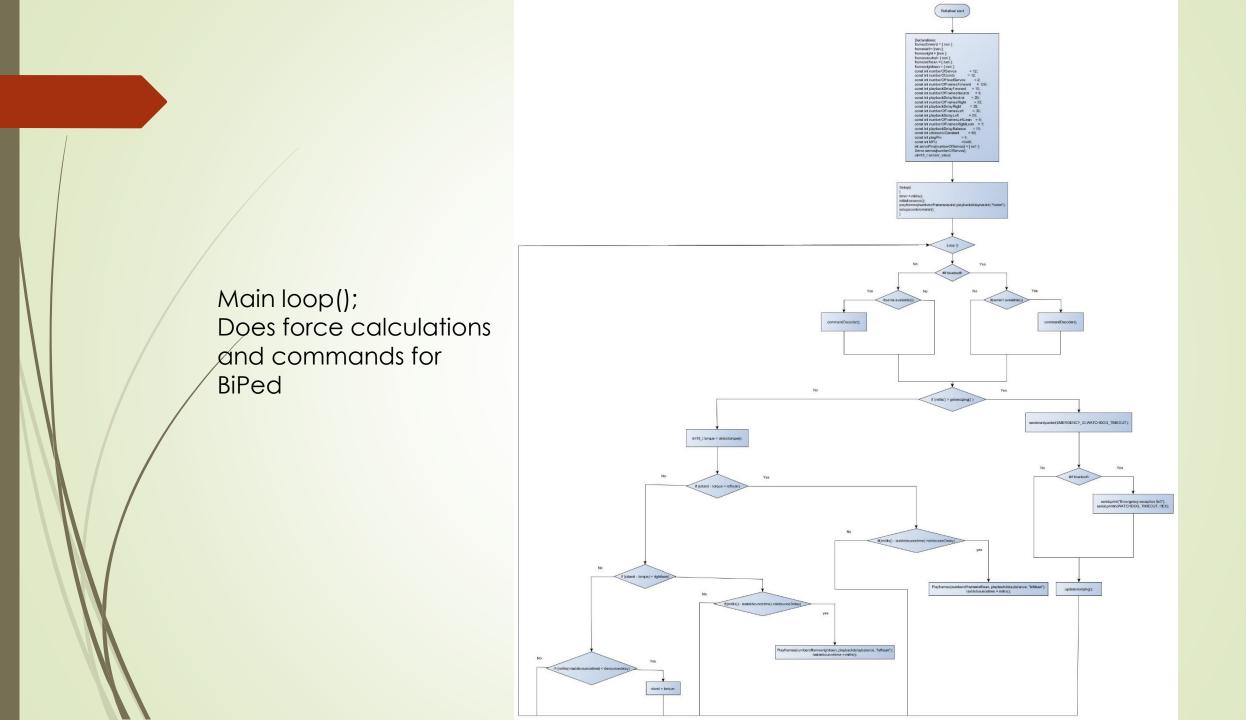
HC-S	SR04	то	ARDU	INO MICRO
PIN	SYMBOL	10	PIN	SYMBOL
1	VSS	\Rightarrow	29	57
2	TRIG	\leftrightarrow	9	D4
3	ECHO	\leftrightarrow	٠	-
4	GND	\leftrightarrow	6	GND
HC	-06			
1	VCC	÷	19	3V3
2	GND	\leftrightarrow	6	GND
3	TXD	\leftrightarrow	4	BX
4	RXD	\leftrightarrow	3	TX
L3G4	200D			
1	GND	\Rightarrow	6	GND
2	VCC	\leftrightarrow	19	3V3
3	SCL	+	8	D3
4	SDA	\leftrightarrow	7	D2
5	SD0	\leftrightarrow	19	3V3
6	CS	\leftrightarrow	-	-
7	INT2	\leftrightarrow	-	-
8	INT1	\leftrightarrow	٠	-


1				
	OUT1	\leftrightarrow	-	-
2	OUT2	\leftrightarrow	-	-
3	OUT3	\leftrightarrow	-	-
4	OUT4	\leftrightarrow	-	-
5	OUT5	\rightarrow	-	-
6	OUT6	+	-	-
ז	OUT?	\leftrightarrow	=	=
8	OUT8	\leftrightarrow	-	-
9	оштэ	\rightarrow	-	-
10	OUT10	\rightarrow	-	-
11	OUT11	\rightarrow	-	-
12	OUT12	\	•	-
13	OUT13	\leftrightarrow	-	-
14	OUT14	\leftrightarrow	-	-
15	OUT15	\leftrightarrow	-	-
16	XERR	+	•	-
17	SOUT	\Rightarrow	-	-
18	GSCLK	‡	10	D5
19	DCPRG	\rightarrow	-	-
20	IREF	†	-	-
21	YCC	\leftrightarrow	-	-
22	GND	\leftrightarrow	-	-
23	BLANK	\leftrightarrow	15	D10
24	XLAT	\rightarrow	18	D13
25	SCLK	\leftrightarrow	17	D12
26	SIN	\leftrightarrow	-	-
27	VPRG	\leftrightarrow	15	VPRG
28	OUTO	\leftrightarrow	-	-

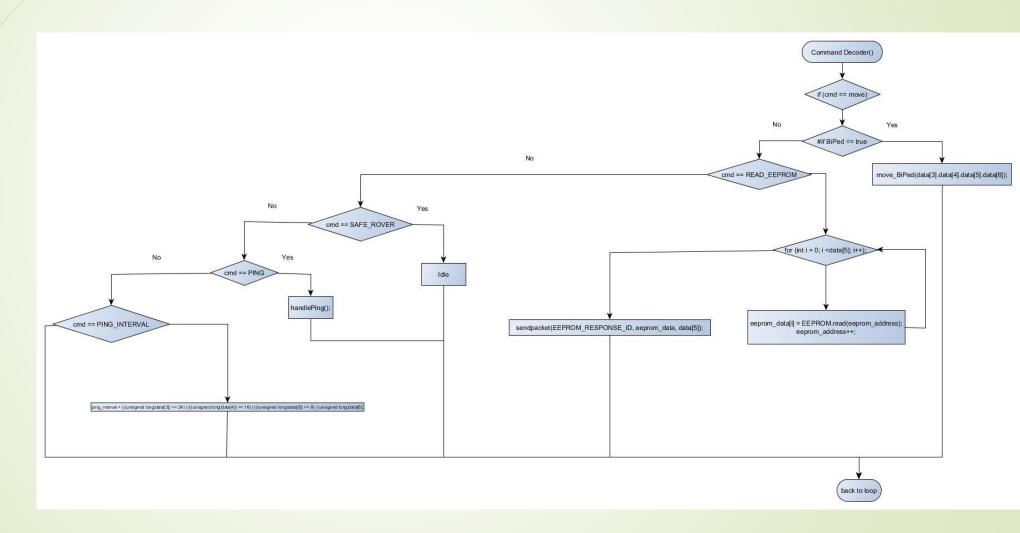
SER	YOS		TLC5940		
ORANGE	0		OUT1	1	
BROWN	В	\leftrightarrow	-	-	
RED	R	\leftrightarrow	-	-	
ORANGE	0	\leftrightarrow	OUT4	4	
BROWN	В	\leftrightarrow	-	-	
RED	R	\leftrightarrow	-	-	
ORANGE	0	\leftrightarrow	OUTS	5	
BROWN	В	\leftrightarrow			
RED	R	\leftrightarrow	-	-	
ORANGE	0	\leftrightarrow	OUT6	6	
BROWN	В	\leftrightarrow	•	-	
RED	R	\leftrightarrow	•	-	
ORANGE	0	\Leftrightarrow	זדטס	7	
BROWN	В	\Leftrightarrow	-	-	
RED	R	\leftrightarrow		-	
ORANGE	0	\leftrightarrow	оит8	8	
BROWN	В	\leftrightarrow	-	-	
RED	R	\leftrightarrow	-	-	
ORANGE	0	\leftrightarrow	оитэ	9	
BROWN	В	\leftrightarrow		-	
RED	R	\leftrightarrow	-	-	
ORANGE	0	\leftrightarrow	OUT10	10	
BROWN	В	\leftrightarrow	-	-	
RED	R	\leftrightarrow	-		
ORANGE	0	\leftrightarrow	OUT11	11	
BROWN	В	\leftrightarrow			
RED	R	\leftrightarrow	-		
ORANGE	0	\leftrightarrow	OUT12	12	
BROWN	В	\leftrightarrow			
RED	R	\leftrightarrow		-	
ORANGE	0	\leftrightarrow	OUT13	13	
BROWN	В	\leftrightarrow	-	-	
RED	R	\leftrightarrow	-	-	
ORANGE	0	\leftrightarrow	OUT14	14	
BROWN	В	\leftrightarrow	-	-	
RED	R	\leftrightarrow	-	-	


Circuit Definition

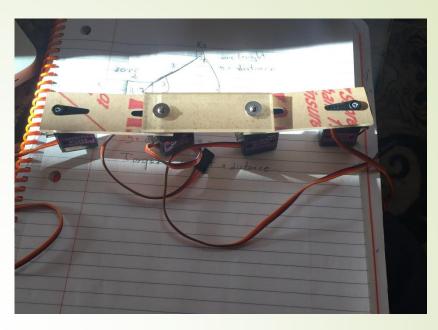

Closer view



Flowcharts:



Move_BiPed();
Takes telemetry and decides what movement


commanddecoder();
Reads commands from
Arxterra

Prototype For verification:

Used SolidWorks to prototype the leg of the micro Biped project. The type of plastic used is acrylic plastic 20"x21" sheet with 0.123" thickness.

Arnel Ignacio from design department helped in cutting it.

Mass Report

Values are measured

Mass report

Devices	Mass (g)	Quantity	Total Mass (g)
Arduino Micro Atmego 32u4	13	1	13
Micro Servos (MG905)	13.4	12	160.8
Sain Smart HC-SR04 Ultrasonic Sensor	8.5	1	8.5
L3G4200D	13	1	13
HC-06	1	1	1
Battery	43	2	86
Plastic	227	1	227
Total Mass			509

Values are measured

Power Break Down

	Device	Quantity	Operatin g DC volt.(v)	Max Current (mA)	Operatin g Current (mA)	Total Current (mA)	Power (mW)
	Micro Arduino	1	5	50	45	45	225
	Servos	12	5	448(Stall)	120	1440	7200
1	HC-SR04	1	5	15	15	15	75
	L3GD20	1	5	7	5.1	5.1	25.5
	HC-06	1	5	45	40	40	200
	TLC5940	1	5	120	60	60	300
	Total					1605.1	8025.5

Updated Cost:

Parts	Quantity	Price	Subtotal	Margin (%)	Ma	rgin (\$)
Microservo	12 \$	4.96	\$ 59.52	15	\$	8.93
#1585 2 Layer PCB	1 \$	43.15	\$ 43.15	15	\$	6.47
Battery charger	1\$	15.00	\$ 15.00	10	\$	1.50
Gyro	1 \$	9.96	\$ 9.96	15	\$	1.49
Bluetooth	2 \$	4.50	\$ 9.00	10	\$	0.90
Radio Shack Ping Ultra-Sonic Range Finder Distange Sensor by Parallax for Arduino and More 276-0031 28015	1 \$	-	\$ -	15	\$	-
Battery	2 \$	4.30	\$ 8.60	15	\$	1.29
Microcontroller	1 \$	17.99	\$ 18.65	10	\$	1.87
Silicone Mold Maker	5 \$	-	\$ -	15	\$	-
Casting Resin	5 \$	-	\$ -	15	\$	-
Ероху	1 \$	-	\$ -	15	\$	-
A26509-40-ND CONN HDR BRKWAY	2 \$	1.82	\$ 3.64	15	\$	0.55
CONN FEMALE 34POS	1 \$	1.53	\$ 3.06	15	\$	0.46
S7004-ND CONN HEADER FEMALE 6POS	3 \$	0.68	\$ 2.04	15	\$	0.31
S5520-ND CONN HEADER FEMALE 12POS	1\$	1.53	\$ 1.53	15	\$	0.23
Splitter Parallel Battery Connector	1\$	5.99	\$ 5.99	15	\$	0.90
Connector Adapter Plug Converter	1 \$	6.99	\$ 6.99	15	\$	1.05
Crumbuino Mega 45	1 \$	52.00	\$ 52.00	10	\$	5.20
TLC5940	1 \$	6.59	\$ 6.59	10		0.659
Shipping Costs and Tax	\$	30.00	\$ 30.00	15	\$	4.50
	Al	l Parts	\$ 275.72	Margin (+/-)	\$	36.30

Original budget \$393.72; Current projected cost \$275.72

New schedule

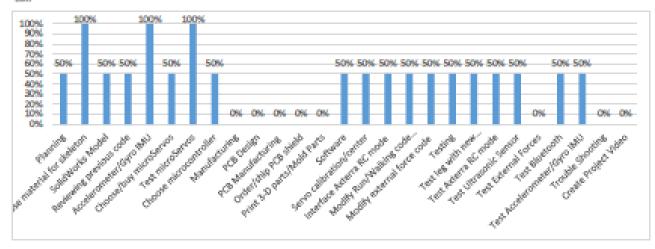
0	Task 🕌 Mode	Task Name	Duration 🕌	Start	Finish 🔻	Resource Names 🔻	% Complete 🕌
	A.	Planning	34 days	Fri 2/6/15	Wed 3/25/15	Planning	50%
~	A	Choose material for skeleton	0 days	Sat 2/7/15	Mon 2/9/15	Plastic (ABS)	100%
	*	SolidWorks Model	14 days	Fri 2/6/15	Wed 2/25/15	Yakub (SolidWorks)	50%
	À	Reviewing previous code	34 days	Fri 2/6/15	Wed 3/25/15	Ameen & McGeary (Code)	50%
~	À	Accelerometer/Gyro IMU	14 days	Fri 2/6/15	Wed 2/25/15	Everyone (IMU)	100%
	À	Choose/buy microServos	10 days	Sun 3/8/15	Thu 3/19/15	Everyone(microSer	50%
1	*	Test microServos	7 days	Thu 3/19/15	Fri 3/27/15	Everyone (Test Ser	100%
	*	Choose microcontroller	34 days	Fri 2/6/15	Wed 3/25/15	Everyone(microcor	50%
	A.	Manufacturing	30 days	Wed 2/25/15	Tue 4/7/15	Manufacturing	0%
	A.	PCB Design	3 days	Thu 4/2/15	Mon 4/6/15	Ameen & McGeary	0%
	AP.	PCB Manufacturing	15 days	Fri 4/17/15	Thu 5/7/15	Yakub (PCB manufa	0%
	×	Order/ship PCB shield	1 day	Mon 4/6/15	Mon 4/6/15	Order PCB shield	0%
	À	Print 3-D parts/Mold Parts	10 days	Wed 4/1/15	Tue 4/14/15	Yakub(mold parts)	0%
	*	Software	31 days	Wed 2/25/15	Wed 4/8/15	Software	50%
	*	Servo calibration/center	4 days	Wed 4/1/15	Mon 4/6/15	Ameen & McGeary	50%
	*	Interface Axterra RC mode	7 days	Mon 3/23/15	Tue 3/31/15	Ameen & McGeary (Axterra RC mode)	50%
	À	Modify Run/Walking code to allow for stepping over	10 days	Sun 3/29/15	Thu 4/9/15	Ameen & McGeary (runnnin/walking)	50%
	*	Modify external force code	5 days	Sun 3/29/15	Thu 4/2/15	Ameen & McGeary (External Forces)	50%
	A	Testing	32 days	Thu 3/26/15	Fri 5/8/15	Testing	50%
	*	Test leg with new microServos	10 days	Thu 3/26/15	Wed 4/8/15	Everyone (legs)	50%
	À	Test Axterra RC mode	10 days	Wed 4/8/15	Tue 4/21/15	Everyone (RC Axter	50%
	*	Test Ultrasonic Sensor	10 days	Wed 4/8/15	Tue 4/21/15	Everyone (Ultrason	50%
	*	Test External Forces	10 days	Thu 3/26/15	Wed 4/8/15	Everyone (External	0%
	*	Test Bluetooth	10 days	Wed 4/8/15	Tue 4/21/15	Everyone (Bluetoo	50%
	オオ	Test Trouble Shooting	10 days 14 days	Thu 3/26/15 Wed 4/8/15	Wed 4/8/15 Sun 4/26/15	Everyone Everyone	50% 0%
	*	Create Project Video	6 days	Sun 4/26/15	Fri 5/1/15	Everyone (Project \	0%

PROJECT OVERVIEW

FRI 2/6/15 - FRI 5/8/15

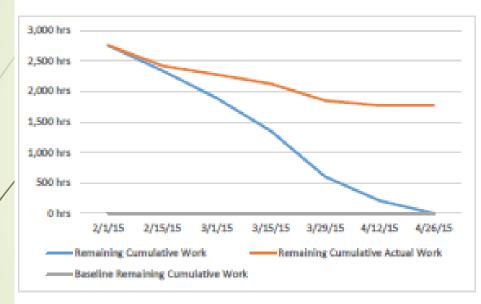
% COMPLETE

41%


LATE TASKS

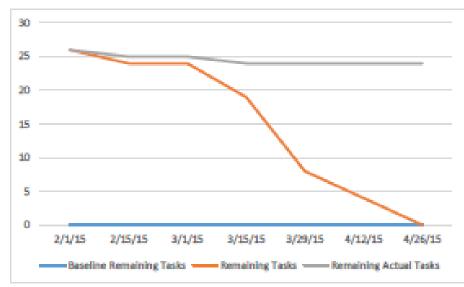
Tasks that are past due.

Name	Start	Finish	Duration	% Complete	Resource Names
Planning	Fri 2/6/15	Wed 3/25/15	34 days	50%	Planning
SolidWorks Model	Fri 2/6/15	Wed 2/25/15	14 days	50%	Yakub (SolidWorks)
Reviewing previous code	Fri 2/6/15	Wed 3/25/15	34 days	50%	Ameen & McGeary (Code)
Choose/buy microServos	Sun 3/8/15	Thu 3/19/15	10 days	50%	Everyone(micr oServo)
Choose microcontroller	Fri 2/6/15	Wed 3/25/15	34 days	50%	Everyone(micr ocontroller)
Manufacturing	Wed 2/25/15	Tue 4/7/15	30 days	0%	Manufacturing
Software	Wed 2/25/15	Wed 4/8/15	31 days	50%	Software


SCOOMER ETC

Status for all top-level tasks. To see the status for subtasks, click on the chart and update the outline level in the Field List.

Fri 2/6/15 - Fri 5/8/15


BURNDOWN

WORK BURNDOWN

Shows how much work you have completed and how much you have left. If the remaining cumulative work line is steeper, then the project may be late. Is your baseline zero?

Try setting a baseline

TASK BURNDOWN

Shows how many tasks you have completed and how many you have left. If the remaining tasks line is steeper, then your project may be late.

Learn more

Resources:

- 1. http://www.turbocad.com/Portals/1/Charts/PLA%20Uses.pdf
- 2. http://www.stratasys.com/~/media/en/Materials/FDM/PC%20ABS/pc_abs_spec_sheet.pdf
- http://teststandard.com/data_sheets/ABS_Data_sheet.pdf
- ABS. Stratasys Inc. (2007).
- 5. Imre, B. Renner, K. Pukanszky, B. "Interactions, Structure nad properties in poly(latic acid)/thermoplastic polymer blends." eXPRESS Polymer Letters Vol. 8, No. 1 (2014) 2-14. WEB
- 6. https://www.nde-ed.org/EducationResources/CommunityCollege/Materials/Structure/polymer.htm
- 7. http://makezine.com/2014/11/11/abs-or-pla-choosing-the-right-filament/
- 8. http://data.energizer.com/PDFs/nickelmetalhydride_appman.pdf
- 9. http://www.slideshare.net/khanpin2/polyfuse
- 10. http://www.st.com/web/en/resource/technical/document/datasheet/CD00000455.pdf
- 11. http://www.batteryspace.com/prod-specs/SPECIFICATION_9V250%5B1%5D_1.pdf
- 12. http://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-battery-life
- 13. http://treehouseprojects.ca/ultrasonictutorial/
- 14. http://arduinobasics.blogspot.com/2012/11/arduinobasics-hc-sr04-ultrasonic-sensor.html
- 15. https://www.chip45.com/products/crumbuino-mega arduino compatible atmega2560 module board usb.php
- 16. http://arduino.cc/en/Main/arduinoBoardMicro

Appendix A: ABS thermoplastic specifications

Property	English	Metric
Density	0.03757lb/inch^3	1.04g/cm^3
Tensile Strength/yield	4700/4500 psi	33/31MPA
Modulus Strength	320000psi	2200MPA
Tensile Elongation at Break/yield	6/2%	6/2%
Melting Point	220 ⁰ F	105°C

Appendix B: PLA thermoplastic specifications

Property	English	Metric
Density	0.0448lb/inch^3	1.24g/cm^3
Tensile Strength/yield	21000/15000psi	144.5/103.2MPA
Modulus Strength	500000psi	3440MPA
Tensile Elongation at Break/yield	180/100%	180/100%
Melting Point	320°F	160°C

Appendix C: Difference between NiMH and LiPO

NiMH Vs. LiPO						
Feature	NiMH	Lipo				
Weight	0.6 Wh/gram	0.132 Wh/gram				
Rated Voltage	1.25 V	3.7 V				
Safety	Save	Dangerous				
Efficient	At high rate discharges	More efficient				
Temperature	-10 to 65	-20 to 60				
	Weight Rated Voltage Safety Efficient	Feature NiMH Weight 0.6 Wh/gram Rated Voltage 1.25 V Safety Save Efficient At high rate discharges				

Appendix D:

Code

```
// Sweep
// by BARRAGAN <a href="http://barraganstudio.com">http://barraganstudio.com</a>
// This example code is in the public domain.
#include <Servo.h>
Servo myservo; // create servo object to control a servo
                // a maximum of eight servo objects can be created
int pos = 0; // variable to store the servo position
void setup()
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
void loop()
  for(pos = 0; pos < 180; pos += 1) // goes from 0 degrees to 180 degrees
                                     // in steps of 1 degree
   myservo.write(pos);
                                    // tell servo to go to position in variable 'pos'
    delay(15);
                                     // waits 15ms for the servo to reach the position
  for(pos = 180; pos >= 1; pos -= 1)
                                     // goes from 180 degrees to 0 degrees
   myservo.write(pos);
                                     // tell servo to go to position in variable 'pos'
    delay(15);
                                      // waits 15ms for the servo to reach the position
```

http://arduino.cc/en/Tut orial/sweep