California State University Long Beach College of Engineering Department of Electrical Engineering

µBiPed

Project Manager & Control and Image Processing: Tate McGearySystems and Test Engineering:Mesfer AldosariSensors, Actuators, and Power:Ameen Alattas3D Printing and Manufacturing:Yakub Dure

Mission Objective and Profile:

- Using the Axterra[™] application in remote control mode, a µBiPed will be made. A µBiPed is a BiPed created using micro-servos.
- The µBiPed will have to walk on surfaces of varying gradients, and types. The µBiPed will also have to maneuver over uneven surfaces of at most 2 cm and avoid obstacles.
- The µBiPed should be finished May 8th 2015

Requirements: Level 1

- The µBiPed must be finished by the 8th of May, 2015 to correspond with the duration of the EE 400D class.
 - Verification: <u>http://web.csulb.edu/divisions/aa/calendars/documents/2014-2015_academic_calendar_updated.pdf</u>
- The µBiPed must move (i.e. walk in a human-like fashion) up an incline that starts initially at 8° and then decreases to a 6° slope in relation to level ground. This is due to the obstacle course prescribed in the specifications.
 - Verification: To test this parameter, the µBiPed will be sent up an incline at varying grades, starting at 6° and going till at least 8°. The incline grade may increase past the 8° in order to test failure point.
- The µBiPed must avoid walls at a distance of TBD. Determined by the mission profile. The distance may be determined based off of the constraints of the parts used to determine distance, or the customer may indicate distance.
 - Verification: Will have the µBiPed walk towards an object, i.e. a wall, and see if the µBiPed will stop or try and change path. The distance will be measured with a tape measure.

- The µBiPed must walk over or on an object at about a 45° angle and a height of 2 cm. This is part of the mission profile dictated by the specifications.
 - Verification: The µBiPed will walk over an object of about 2 cm +/- 1 cm. The 2 cm is for margin of error. This will be measured by a ruler.
- The µBiPed must walk on surfaces of varying friction coefficients:
 - Carpet: 1.0 static ^[1]
 - Linoleum: 0.5 static ^[2]
 - Verification: The µBiPed will walk on all three types of surfaces. Carpeting will vary, it will range from thick to thin. Verification for each surface friction coefficient was found on the below websites.
- The µBiPed must stabilize when disturbed by a force/time of TBD. The force has not yet been calculate. This requirement is dictated by the specifications and mission profile.
 - Verification: The µBiPed will be hit to test response to immediate impact, and will be tested for force applied over time, i.e. a push. Force will be measured by a force gauge or equivalent.

References:

<u>https://pisci.wikispaces.com/Coefficients+of+Friction</u>
<u>http://www.floorcare-usa.com/pdf/CoefficientFriction.pdf</u>
<u>http://www.engineeringtoolbox.com/friction-coefficients-d</u>

- The µBiPed must weigh no more than TBD in order to facilitate the miniaturized size of the µBiPed. Otherwise, if the µBiPed is too heavy the project may not be realizable.
 - Verification: The servos will be tested for maximum torque, then µBiPed will be weighed with a scale and will be checked if it can move.
- The µBiPed must interface with Arxterra Remote Control[™] mode as defined by the specifications. The RC mode must be used because the µBiPed must conserve its mass; any additional mass, such as a phone would require the increase of size.
 - Verification: The Arxterra Remote Control[™] mode will be used to direct movement in the µBiPed. Movement via Bluetooth will verify that connection with Arxterra has been meant.
- The µBiPed must be miniaturized as is dictated by its own name, size TBD.
 - Verification: The µBiPed will have its size miniaturized compared to its larger model. Measurement will be done with a ruler or equivalent.

Level 2 Requirements

- In order to avoid an obstacle the µBiPed will use an HC-SR04[™] ultrasonic sensor. Primary reasons are that it is less susceptible to noise and cost; in addition, the project has one in inventory. Refer to requirement 3, level 1.
 - Verification: Based on previous semesters, distance will be determined when height of the µBiPed has been decided to finalize the angle of detection. Calculations will be done similar to previous semesters. Link provided below.
 - <u>http://www.arxterra.com/ultrasonic-sensor-examination/</u>
- The µBiPed will use a gyro, type TBD, in order to allow for completion of requirement 2, level 1, and requirement 6, level 1.
 - Verification: The µBiPed will be tested on how well the gyro keeps it stable. This will be done by walking over uneven surfaces and not falling over.
- In order to successfully miniaturize the µBiPed, micro-servos will be used. Type of micro-servos are TBD after testing. The project must test the micro servos using SolidWorks or through math analysis in order to determine if micro servos provide enough torque to complete the project.
 - Verification: Micro-servos will be tested on strength and maximum load they can handle based off the load bearing tests.
- In order to miniaturize the µBiPed, a microcontroller, type TBD, must be chosen. The microcontroller should at least have 14 kb of Flash memory and 4.7 kb of SRAM.
 - Verification: Microcontroller will be tested if it can control at least 12 servos and facilitate the additional components needed to implement the µBiPed.

- Due to the miniaturization of the µBiPed, a PCB board will be fabricated that includes the wiring for the gyro, the Bluetooth IC, and the servo pins that will allow for the microcontroller to interface with the assembly.
 - Verification: A continuity test to verify proper wiring layout of the PCB.
- In order to traverse multiple surfaces (requirement 5, level 1) the µBiPed's legs must have some type of tread or rubber sole added to it. See reference 3 on page 1.
 - Verification: Will test the µBiPed with various types of tread to see the traction difference.
- In order to keep within the specified size restriction, the µBiPed will have light weight batteries. Type of batteries are TBD
 - Verification: Testing and calculations will be performed before selection.
- A fight weight material must be used for the frame in order to keep within the specific mass restrictions of the uBiPed; the type of material is **TBD**. Testing must be done as to whether or not the µBiPed can be made of plastic, or if a lighter material must be used.
 - Verification: Different materials will be strength tested and weighed. Strength testing will be verified by hand, and weight will be verified with a scale.
- As mentioned in item 5, a Bluetooth IC will be chosen that will communicate to the Arxterra™ program. An IC must be used in order to minimize the µBiPed size and mass. The type of Bluetooth IC is **TBD**. *Requirement 9, level 1*.
 - Verification: To test if the Bluetooth IC works properly commands will be given from the Arxterra Remote Control[™] program and the robot will respond accordingly.

Systems and Test

By: Mesfer Aldosari

Interface Definition

ARDUINO MICRO PIN CONNECTIONS

PIN	SYMBOL	FUNCTION
1	MOSI	MASTER OUT SLAVE IN
2	SS	SLAVE SELECT
3	ТX	TRANSMIT / DIGITAL PIN 1
4	RX	RECEIVE / DIGITAL PIN 0
5	RST	RESET
6	GND	GROUND
7	D2	DIGITAL PIN 2 / SERIAL DATA LINE
8	D3	DIGITAL PIN 3 / SERIAL CLOCK LINE / PWM
9	D4	DIGITAL PIN 4 / ANALOG 6
10	D5	DIGITAL PIN 5
11	D6	DIGITAL PIN 6 / ANALOG 7 / PWM
12	D7	DIGITAL PIN 7
13	D8	DIGITAL PIN 8 / ANALOG 8
14	D9	DIGITAL PIN 97 ANALOG 97 PWM
15	D10	DIGITAL PIN 10 / ANALOG 10 / PWM
16	D11	DIGITAL PIN 117 PWM
17	D12	DIGITAL PIN 12 / ANALOG 11
18	D13	DIGITAL PIN 13 / PWM
19	3V3	+ 3.3 V
20	REF	ANALOG REFERENCE
21	AO	ANALOG 0
22	A1	ANALOG 1
23	A2	ANALOG 2
24	A3	ANALOG 3
25	A4	ANALOG 4
26	A5	ANALOG 5
27	NC	NOT CONNECTED
28	NC	NOT CONNECTED
29	57	+ 5.0 V
30	RST	RESET
31	GND	GROUND
32	VIN	VOLTAGE IN (7-12 V)
33	MISO	MASTER IN SLAVE OUT
- 34	SCK	SYNCHRONOUS CLOCK

	HC	SR04
PIN	SYMBOL	FUNCTION
1	VCC	VOLTAGE SOURCE
2	TRIG	TRIGGER INPUT
3	ECHO	ECHO OUTPUT
4	GND	GROUND
HC-06	BLUETO	OTH V2 CLASS 2.0
PIN	SYMBOL	FUNCTION
1	VCC	VOTLAGE SOURCE
2	GND	GROUND
3	TXD	TRANSMITE
4	RXD	RECEIVE
	120	12000
	130	+2000
PIN	SYMBOL	FUNCTION
1		
· ·	GND	GORUND
2	GND VCC	GORUND VOLTAGE SOURCE
2	UCC SCL	GORUND VOLTAGE SOURCE SERIAL CLOCK LINE
2 3 4	GND VCC SCL SDA	GORUND VOLTAGE SOURCE SERIAL CLOCK LINE SERIAL DATA LINE
2 3 4 5	GND VCC SCL SDA SD0	GORUND VOLTAGE SOURCE SERIAL CLOCK LINE SERIAL DATA LINE SERIAL DATA OUTPUT
2 3 4 5 6	GND VCC SCL SDA SD0 CS	GORUND VOLTAGE SOURCE SERIAL CLOCK LINE SERIAL DATA LINE SERIAL DATA OUTPUT SPI ENABLE
2 3 4 5 6 7	GND VCC SCL SDA SD0 CS INT2	GORUND VOLTAGE SOURCE SERIAL CLOCK LINE SERIAL DATA LINE SERIAL DATA OUTPUT SPI ENABLE PROGRAMMABLE INTERRUPT
2 3 4 5 6 7 8	GND VCC SDA SDA CS INT2 INT1	GORUND VOLTAGE SOURCE SERIAL CLOCK LINE SERIAL DATA LINE SERIAL DATA OUTPUT SPI ENABLE PROGRAMMABLE INTERRUPT PROGRAMMABLE INTERRUPT
2 3 4 5 6 7 8	GND VCC SCL SDA SD0 CS INT2 INT1 SE	GORUND VOLTAGE SOURCE SERIAL CLOCK LINE SERIAL DATA LINE SERIAL DATA OUTPUT SPI ENABLE PROGRAMMABLE INTERRUPT PROGRAMMABLE INTERRUPT
2 3 4 5 6 7 8 8	GND VCC SCL SDA SD0 CS INT2 INT1 SE	GORUND VOLTAGE SOURCE SERIAL CLOCK LINE SERIAL DATA LINE SERIAL DATA OUTPUT SPI ENABLE PROGRAMMABLE INTERRUPT PROGRAMMABLE INTERRUPT RVO FUNCTION

GROUND

VOLTAGE SOURCE

в

R

BROWN

RED

			SEF	RVOS					
CONNECTIONS			ORANGE	0	¢	9	D4		
					BROWN	В	\leftrightarrow	-	-
HC-	SR04		ARDU	JINO MICRO	RED	R	\leftrightarrow	-	-
PIN	SYMBOL	то	PIN	SYMBOL	ORANGE	0	\leftrightarrow	10	D5
1	Vec	\sim	20	51/100E	BROWN	В	\leftrightarrow	-	-
	V33	\rightarrow	29	57	RED	R	\leftrightarrow	-	-
2	TRIG		7	D4	ORANGE	0	\leftrightarrow	11	D6
3	ECHO		-	-	BROWN	В	\leftrightarrow	-	-
4	GND	\leftrightarrow	6	GND	RED	R	\leftrightarrow	-	-
нс	-06				ORANGE	0	\leftrightarrow	12	D7
	-00	~~~	40	21/2	BROWN	В	\leftrightarrow	-	-
1	VCC		19	3V3	RED	R	\leftrightarrow	-	-
2	GND	\rightarrow	6	GND	ORANGE	0	\leftrightarrow	13	D8
3	TXD	\leftrightarrow	4	RX	BROWN	В	\leftrightarrow	-	-
4	RXD	\leftrightarrow	3	TX	RED	R	\leftrightarrow	-	-
L3G4200D					ORANGE	0	\leftrightarrow	14	D9
	2000	2.5	0	OND	BROWN	В	\leftrightarrow	-	-
1	GND		6	GND	RED	R	\leftrightarrow	-	-
2	VCC	\leftrightarrow	19	3V3	ORANGE	0	\leftrightarrow	15	D10
3	SCI	¢	8	D3	BROWN	В	\leftrightarrow	-	-
	002				RED	R	\leftrightarrow	-	-
4	SDA	\leftrightarrow	7	D2	ORANGE	0	\leftrightarrow	16	D11
5	SD0	¢	19	3V3	BROWN	В	\leftrightarrow	-	-
6	CS	\leftrightarrow	-	-	REU	К	\leftrightarrow	- 17	-
7	INT2	~ ~	_	_			\leftrightarrow	11	012
	INT2				DROWIN		\rightarrow		-
0		\leftrightarrow	-	-	OBANGE			18	D13
					BROWN	В	$ \simeq$	-	-
					RED	IB	\rightarrow	-	-
					ORANGE	Ö	\leftrightarrow	22	A1
					BROWN	В	\leftrightarrow	-	-
					RED	B	\leftrightarrow	-	-

Resource Reports

Mass Report

Device	Mass (g)	Quantity	Total mass (g)
Arduino Micro Atmega 32u4	13[3]	1	13
Micro Servos (MG90S)	13.4 ^[2]	12	160
Sain Smart HC-SR04 Ultrasonic Sensor	8.5 [1]	1	8.5
L3G4200D	13	1	13
HC - 06	1	1	1
Battery	TBD	TBD	TBD
Plastic	TBD	TBD	TBD
TOTAL MASS:			TBD

References:

 http://www.amazon.com/SainSmart-HC-SR04-Ranging-Detector-Distance/dp/B004U8TOE6
http://www.hobbyking.com/hobbyking/store/ 9392 Turnigy MG90S Digital Metal Gear Servo 1 8kg 13 4g 0 10sec.html
http://arduino.cc/en/Main/arduinoBoardMicro

Power Budget

Device	Quantity	Ave. Operating DC Voltage (V)	Ave. Operating Current (mA)	Ave. Total Current (mA)	Power (mW)	Margin of error
Micro Arduino Atmega32u4	1	5	50	50	250	15%
Micro servos (MG90S)	12	5 370 8880		44400	15%	
Sain Smart HC- SR04 Ultrasonic Sensor	1	5	2	2	10	15%
L3G4200D*	1	3.6	6.1	6.1	21.96	10%
HC-06	1	3.3	8	8	26.4	5%
Total				8946.1	44708.36	

Bill of Materials For Sensors, Actuators, Power:

Device	Quantity	Cost (\$)	Total Cost (\$)	Margin (%)	Margin Cost (\$)
Micro Arduino Atmega32u4	1	25.65	25.65	10	2.57
Micro servos (MG90S)	12	4.00	48.00	15	7.2
Sain Smart HC- SR04 Ultrasonic Sensor	1	-	-	-	-
Gyro -MPU	1	49.95	49.95	10	5
HC-06	1	5.99	5.99	15	0.89
Total			129.59		15.66

Bill of Materials Design and Manufacturing:

Device	Quantity	Cost (\$)	Total Cost (\$)	Margin (%)	Margin Cost (\$)
Layer PCB	1	43.15	43.15	15	6.47
Silicone Mold Maker	5	15.00	75.00	15	11.25
Casting Resin	5	13	65.00	15	9.75
Ероху	1	10.00	10.00	15	1.5
Total			193.15		28.97

System Verification

Incline Test

To meet requirement 2, level 1 the µBiPed will be directed to walk up a incline initially at 8° then lowered to 6°. Test result TBD

Sensor Test

To fulfill requirement 3, level 1 a HC-SR04 ultrasonic sensor will be used to avoid obstacles that may impede the µBiPed. To test this, the HC-SR04 will be tested independently by writing code to check if the part functions properly can provide an interrupt command. Results are TBD

Communication Test

A Bluetooth Version 2 Class 2.0 component will be chosen and tested for compatibility with the Arxterra Remote Control[™] mode. Compatibility will be tested by sending a command to the Bluetooth component from Arxterra Remote Control[™]. Test result **TBD**

Gyro Test

 Gyroscope will be tested by checking the direction or orientation of itself when relayed through a micro-controller. Code for this will be implemented or created. Results are TBD

Sensors, Actuators, and Power

By: Ameen Alattas

Bluetooth

- Due to mass constraints the µBiPed will attempt to use the HC-06, which is only the Bluetooth on the JY-MCU.
 - JY-MCU pictured top right.
 - HC-06 pictured bottom right.
- Primary reason for choice was due recommendation, and information on use from previous semesters. Cost was also an important factor and the HC-06 cost is \$5.99.
 - Other reason includes that the HC-06 is a Bluetooth Class 2 V2 rated device to communicate with Arxterra

[1] <u>http://www.dx.com/p/jy-mcu-arduino-bluetooth-wireless-serial-port-module-</u> 104299

[2] http://www.elecfreaks.com/store/images/product_images/Wireless/bluetooth/ bluetooth-HC05-02.jpg

Taken from elecfreaks.com see Reference 2 at the bottom

Taken from DX.com see Reference 1 at the bottom

References:

Gyroscope

- Currently the µBiPed group is looking into the L3G4200D gyroscope
 - Most commonly used breakout boards for the Arduino use this gyroscope
 - Cost effective
 - Documentation on use from outside sources

Taken from sparkfun.com see reference 1

References: [1] <u>https://www.sparkfun.com/products/10612</u>

Servos

- The µBiPed group is looking into using the MG90S
- Primary Reasons for favoritism:
 - MG90S provides the most torque for cost out of other servos being considered, at 1.8 kg/cm.
 - See Appendix A for other servos that may be considered.
 - At \$4.96 x 1 servo, the MG90S is more cost effective when compared to servos with higher torque.

References: [1]http://www.hobbyking.com/hobbyking/store/ 9392 Turnigy MG90S Digital Metal Gear Servo 1 8kg 13 4g 0 10sec.html

Taken from hobbykings.com see reference 1.

Control

By: Tate McGeary

Microcontroller: Arduino Micro

- Arduino Micro
 - Flash: 32 KB (4 KB dedicated to boot)
 - SRAM: 2.5 KB
 - Weight: 13g
- Code:
 - Flash: 14 KB
 - SRAM: 4.7 KB
- Relavance:
 - SRAM of code exceeds the best choice for a micro-controller for the µBiPed
 - Other microprocessors are now being considered

References:

[1] http://arduino.cc/en/Main/arduinoBoardMicro

Taken from Arduino.cc see reference 1.

Studies:

- Controllers
 - Looking if a controller needs to be made
 - Read studies on BiPeds from IEEE and see their methods
 - Can servos be controlled via PIDs or observer controllers?
 - Benefits to a PID controller vs Observer controller?
- Arduino Micro:
 - The Arduino Micro can control 12 servos, but it is limited by the amount of SRAM
 - Option: Increase SRAM with a 23A256/23K256
 - Other Options: look into variable optimization in the code.

3D - Manufacturing

By: Yakub Dure

Design:

- The µBiPed will use Jonathan Dowdall's design depicted to the right.
- It will be scaled down to fit micro-servos of dimensions 22.5x12x35.5 mm
- The upper portion of the µBiPed will still contain the ultrasonic sensor, PCB board, and microprocessor
- A mirror system will not be included as a Samsung phone will not be used
 - The phone is deemed too heavy to be lifted by the µBiPed, instead Remote Control mode will be used to control the µBiPed.

Taken from projectbiped.com see reference 1

References: [1] <u>http://www.projectbiped.com/</u>

Parts Completed

- These parts are roughly scaled to be one third of the size of ROFI parts but will eventually be modified according to the our servo
- Bearing Bar
- Servo Bracket
- Body Strut
- Body Panel Front
- Center Bracket

PCB & Mold:

- The µBiPed group plans on creating a PCB board that will allow for the microprocessor to interface with all external devices.
 - The PCB board will be designed when parts are decided upon.
- After 3-D printing parts for the µBiPed, the group may use the 3-D prints as the bases for molding
 - Molding is to allow for stronger material to be used
 - And opportunity to switch to lighter materials if needed.

Cost and Schedule.

By: Tate McGeary

Cost of each system:

System	Cost (\$)	Margin Cost (\$)
Systems and Test	0	0
Sensors, Actuators, and Power	129.59	15.66
Control and Image Processing	0	00
Manufacturing	193.15	28.97
Total	322.74	44.63

*To see estimation of cost total cost and break down of all parts go to Appendix B.

Schedule:

	0	Task 🖕 Mode	Task Name 💂	Duration 🖕	Start 🗸	Finish 🚽	Predecessors 🖕	Resource Names 🖕	% Complete 🔶
1		*	Planning	14 days	Fri 2/6/15	Wed 2/25/15		Planning	0%
2	~	*	Choose material for skeleton	2 days	Sat 2/7/15	Mon 2/9/15		Plastic (Mold)	<mark>1</mark> 00%
3		*	SolidWorks Model	14 days	Fri 2/6/15	Wed 2/25/15		Yakub (SolidWorks)	0%
4		*	Reviewing previous code	14 days	Fri 2/6/15	Wed 2/25/15		Ameen & McGeary (Code)	0%
5		*	Accelerometer/Gyro IMU	14 days	Fri 2/6/15	Wed 2/25/15		Everyone (IMU)	0%
6		*	Choose/buy microServos	7 days	Wed 2/11/15	Thu 2/19/15		Everyone(microSer	0%
7		*	Test microServos	7 days	Wed 2/11/15	Thu 2/19/15		Everyone (Test Ser	0%
8		*	Choose microcontroller	14 days	Fri 2/6/15	Wed 2/25/15		Everyone(microcor	0%
9		*	Manufacturing	30 days	Wed 2/25/15	Tue 4/7/15		Manufacturing	0%
10		*	PCB Design	15 days	Wed 2/25/15	Tue 3/17/15		Ameen & McGeary	0%
11		*	PCB Manufacturing	15 days	Tue 3/17/15	Mon 4/6/15		Yakub (PCB manufa	0%
12		*	Order/ship PCB shield	1 day	Mon 4/6/15	Mon 4/6/15		Order PCB shield	0%
13		*	Print 3-D parts/Mold Parts	10 days	Wed 2/25/15	Tue 3/10/15		Yakub(mold parts)	0%
14		*	Software	22 days	Wed 2/25/15	Thu 3/26/15		Software	0%
15		*	Servo calibration/center	5 days	Wed 2/25/15	Tue 3/3/15		Ameen & McGeary	0%
16		*	Interface Andriod ADK	5 days	Wed 2/25/15	Tue 3/3/15		Ameen & McGeary	0%
17		*	Interface Axterra RC mode	5 days	Tue 3/3/15	Mon 3/9/15			0%
18		*	Modify Run/Walking code to allow for stepping over	10 days	Mon 2/9/15	Fri 2/20/15		Ameen & McGeary (runnnin/walking)	0%
19		*	Modify external force code	5 days	Fri 3/20/15	Thu 3/26/15		Ameen & McGeary (External Forces)	0%
20		*	Testing	32 days	Thu 3/26/15	Fri 5/8/15		Testing	0%
21		*	Test leg with new microServos	10 days	Thu 3/26/15	Wed 4/8/15		Everyone (legs)	0%
22		*	Test Axterra RC mode	10 days	Wed 4/8/15	Tue 4/21/15		Everyone (RC Axter	0%
23		*	Test Ultrasonic Sensor	10 days	Wed 4/8/15	Tue 4/21/15		Everyone (Ultrason	0%
24		*	Test External Forces	10 days	Thu 3/26/15	Wed 4/8/15		Everyone (External	0%
25		*	Test Bluetooth	10 days	Wed 4/8/15	Tue 4/21/15		Everyone (Bluetoo	0%

References:

- <u>http://web.csulb.edu/divisions/aa/calendars/documents/2014-2015_academic_calendar_updated.pdf</u>
- http://www.amazon.com/SainSmart-HC-SR04-Ranging-Detector-Distance/dp/B004U8TOE6
- <u>http://www.hobbyking.com/hobbyking/store/ 9392 Turnigy MG90S Digital Metal G ear Servo 1 8kg 13 4g 0 10sec.html</u>
- <u>http://arduino.cc/en/Main/arduinoBoardMicro</u>
- https://pisci.wikispaces.com/Coefficients+of+Friction
- <u>http://www.floorcare-usa.com/pdf/CoefficientFriction.pdf</u>
- <u>http://www.engineeringtoolbox.com/friction-coefficients-d_778.html</u>
- http://www.dx.com/p/jy-mcu-arduino-bluetooth-wireless-serial-port-module-104299
- <u>http://www.elecfreaks.com/store/images/product_images/Wireless/bluetooth/bluetooth/bluetooth-HC05-02.jpg</u>
- <u>https://www.sparkfun.com/products/10612</u>

Appendix A - Servos

Name	Torque	Speed	Weight	Rotation	Price
HK15178	1.2kg/cm(4.8v) 1.4kg/cm(6v)	0.10/60deg @ 4.8v, 0.09/60deg @ 6v	10g	180 deg.	\$3.33
Savox SH- 0256 ultra torque	6.0V: 63 oz-in / 4.6 kg-cm	6.0V: 0.16 sec/60°	15.8g	180 deg.	\$27.99
MG90S	1.8kg/cm(4.8v) 2.2kg/cm(6v)	0.11sec/60degree(4.8v), 0.10sec/60degree(6v)	13.4g	180 deg.	\$4.96
TGY- 50090M	1.6kg.cm (4.8v)2 kg.cm (6.0v)	0.08 sec/60deg (4.8v) 0.07 sec/deg (6.0v)	9g	180 deg.	\$4.99
Turnigy D56LV	0.58kg/cm(3.7v) 0.89kg/cm(5.5v)	0.13s(3.7∨) 0.10s(5.5∨)	5.6g	180 deg.	\$6.93

Appendix B: Cost Breakdown

Parts	Quantity	Price	Subtotal	Margin (%)	Ma	rgin (\$)
Microservo	12	\$ 4.00	\$ 48.00	15	\$	7.20
#1585 2 Layer PCB	1	\$ 43.15	\$ 43.15	15	\$	6.47
Battery charger	1	\$ 15.00	\$ 15.00	10	\$	1.50
Gyro	1	\$ 12.00	\$ 12.00	15	\$	1.80
Bluetooth	1	\$ 9.00	\$ 9.00	10	\$	0.90
Radio Shack Ping Ultra-Sonic Range Finder Distange Sensor by Parallax for Arduino and More 276-0031 28015	1	\$ -	\$ -	15	\$	-
Battery	2	\$ 23.05	\$ 46.10	15	\$	6.92
Microcontroller	1	\$ 18.65	\$ 18.65	10	\$	1.87
Silicone Mold Maker	5	\$ 15.00	\$ 75.00	15	\$	11.25
Casting Resin	5	\$ 13.00	\$ 65.00	15	\$	9.75
Ероху	1	\$ 10.00	\$ 10.00	15	\$	1.50
A26509-40-ND CONN HDR BRKWAY	2	\$ 1.82	\$ 3.64	15	\$	0.55
CONN FEMALE 34POS	1	\$ 1.53	\$ 3.06	15	\$	0.46
S7004-ND CONN HEADER FEMALE 6POS	3	\$ 0.68	\$ 2.04	15	\$	0.31
S5520-ND CONN HEADER FEMALE 12POS	1	\$ 1.53	\$ 1.53	15	\$	0.23
Splitter Parallel Battery Connector	1	\$ 5.99	\$ 5.99	15	\$	0.90
Connector Adapter Plug Converter	1	\$ 6.99	\$ 6.99	15	\$	1.05
Shipping Costs and Tax		\$ 30.00	\$ 30.00	15	\$	4.50
		All Parts	\$ 395.15	Margin (+/-)	\$	57.14