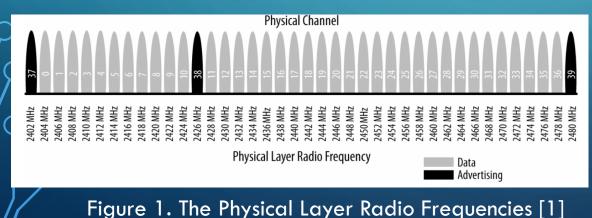
BLUETOOTH LOW ENERGY SEIZURE WRISTBAND CONNECTION

ROBIN YANCEY

O

SPRING 2016


BLE PROTOCOL STACK Physical Layer: contains the analog communication circuitry to modulate and demodulate signals and convert the analog signals to digital (figure 1)

Link Layer: defines roles, eg. who is master, slave, scanner, advertiser

- Device Address: 6 bytes that uniquely identify device among peers (can be registered with IEEE as public address, preprogrammed, or generated on device)
- Advertising and Scanning: when the advertising and scanning channels overlap advertising packet will be received
- Two types of packets with one data format for advertising and data (31 byte payload)
- Advertising packets are used to broadcast information and to discover slaves and connect to them
- Host Controller Interface: standards for communication across serial interface

• L2CAP: manages SM and ATT and takes large packets from upper layers and breaks them into manageable 27 byte maximum transmittable size packets Access Address Packet Data Unit (PDU)

GATT and GAP

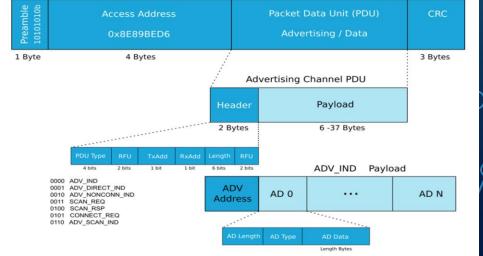
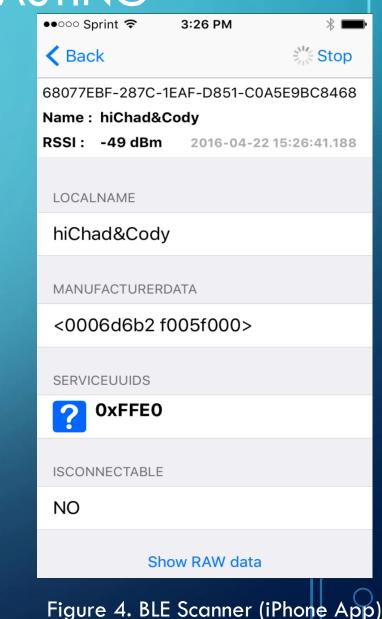


Figure 2. Advertising Payload [2]

GENERIC PROFILES – TOP CONTROL LAYERS OF BLE


defined by the specification- ensures proper operation between BLE devices from different vendors

Generic Access Profile (GAP) defines roles, procedures, and modes to allow devices to broadcast data, discover devices, establish connections, manage connections, and security levels, (mandatory for all BLE devices-all must comply) [1] (https://www.bluetooth.com/specifications/assigned-numbers/generic-accessprofile)

	enum at_ble_adv_type_t		
	GAP Advertising types.		
/* Advertisement data */	Enumerator		
0xF6, 0x52, 0x73, 0xE3, 0x40, 0xB3, 0xB4, 0x1C, 0x19, 0x53, 0x24, 0x2C, 0x72, 0xf4, 0x00, 0xbb, 0x00, 0x45, 0xc5}; /* scan response data */ □ static uint8_t scan_rsp_data[] = {0x11, 0x07, 0x1b, 0xc5, 0xd5, 0xa5, 0x02, 0x00, 0x37, 0xaa, 0xe3, 0x11, 0x2a, 0xdc, 0x00, 0xcd, 0x30, 0x57};	AT_BLE_ADV_TYPE_UNDIRECTED	Connectable undirected.	
	AT_BLE_ADV_TYPE_DIRECTED	Connectable directed.	
	AT_BLE_ADV_TYPE_SCANNABLE_UNDIRECTED	Scannable undirected.	
	AT_BLE_ADV_TYPE_NONCONN_UNDIRECTED	Non connectable undirected.	
	AT_BLE_ADV_TYPE_SCAN_RESPONSE	only used in AT_BLE_SCAN_INFO event to signify a scan response	
	AT_BLE_ADV_TYPE_UNDIRECTED	Connectable undirected.	
	AT_BLE_ADV_TYPE_DIRECTED	Connectable high duty cycle directed advertising.	
	AT_BLE_ADV_TYPE_SCANNABLE_UNDIRECTED	Scannable undirected.	
	AT_BLE_ADV_TYPE_NONCONN_UNDIRECTED	Non connectable undirected.	
The scan response data packet (above) allows the user to advertise	AT_BLE_ADV_TYPE_DIRECTED_LDC	Connectable low duty cycle directed advertising.	
on additional 27 bytes that follow the advertising data packet	AT_BLE_ADV_TYPE_SCAN_RESPONSE	only used in AT_BLE_SCAN_INFO event to signify a scan response	
<pre>/* BLE start advertisement */ if(at_ble_adv_start(AT_BLE_ADV_TYPE_UNDIRECTED, AT_BLE_ADV_GEN_DISCOVERABLE, NUL</pre>		GAP Advertising Type Enumerators in ASF tware Framework)	

NETWORK TOPOLOGY: BROADCASTING

- The two ways a BLE device can communicate: broadcasting or connection
- both method subject to guidelines established by the Generic Access Profile (GAP) [1]
- **Connectionless broadcasting** is sending data out (one-way) to any scanning device (receiver) in listening range picking up the transmitted data.
- An **observer** scans the preset frequencies for non-connectable advertising packets
- connectionless broadcasting: user can send to more than one device,
 Only 2 advertising payloads, no security, fast, easy to use
 - Figure 4 shows non-connectable advertising packets sent from the SamL21 scanned by the BLE Scanner (iPhone App)

NETWORK TOPOLOGY: CONNECTION

connection: permanent private data exchange between **two** devices

The master/central scans the preset frequencies for connectable packets, initiates and establishes the exclusive connection (when suitable), manages timing and initiates periodical data exchanges (once connected, the peripheral stops advertising) [1]

- Connection allows organization of data into characteristics and services through additional Generic Attribute Profile (GATT) protoco layers
- Services can have a number of characteristics each with their own access rights and descriptive metadata [1]
- This also allows for lower use of power because the peripheral does not need to continually advertise
- (figure 5 128 bit service made available in advertising packet)

	●●○○○ S	print ᅙ	2:00 PM	* 📭	
€S	K Bac	ck		Stop	
			AF-D851-C0	A5E9BC8468)
	Name : RSSI :		2016-04-24	10:33:40.902	
	ISCON	INECTABLE			
	YES				
	SERVI	CEUUIDS			
	?	0x5730CD00E	OC2A11E3AA370	002A5D5C51B	
		Sho	w RAW data		
)
5					\sim
					6

Figure 5. Connectable Advertising Packets

GENERIC PROFILES/TOP LAYERS - (GATT)

- Generic Attribute Profile (GATT) defines the data exchange model and procedures that allow devices to discover, read, write, and push data Celements between them [1].
- List of currently adopted services: https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
- "SIG defined GATT-based profiles provide a predefined set of use-case profiles, based on GATT, that cover all procedures and data formats required to implement a wide range of specific use cases" [1].
- vendors are also allowed to define their own profiles, which can be kept private to the two peers involved in the use case or be published so that other parties can implement them [1].

/* characteristics definitions */

```
/* establish peripheral database */
if (at_ble_primary_service_define(&service_uuid2, &service,
NULL, 0, NULL, 0) != AT_BLE_SUCCESS)
{
```

DBG_LOG("Failed to define the primary service2");

●●○○○ Sprint 훅	10:32 PM	* 💷	
A Back	Peripheral	Clone	
Robin			
UUID: 68077EBF	-287C-1EAF-D851-C0A5	E9BC8468	
Connected			
ADVERTISE	MENT DATA	Hide	
Yes Device Is Connec	table		
UUID: FFE0			
OxFFE1 Properties: Read	Write Notify	>	
Log	🔟 Punc	h Through	
Figure 6. Service and Characteristic			

name service 0x0018

Bluetooth Base ID (N/A to vendor-specific UUIDS)

GATT PROFILES (CONTINUED)

servers contains attributes (characteristics), with a 2 byte attribute handle UUID, permissions, and a value. (type = service, handle = characteristic)

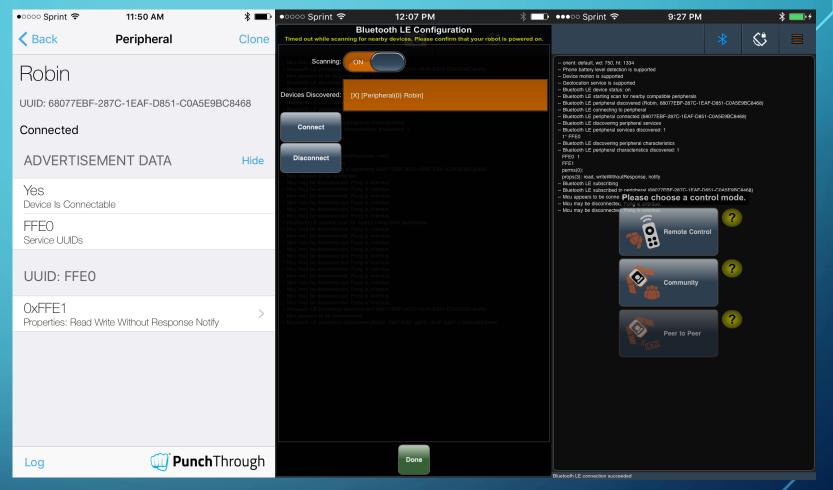
- the handle is used to access the value, while the UUID determines the type and nature of data value [1]
- **Characteristics** combine user data with metadata (such as properties, user-visible name, units, ect.)
- Attributes also usually contain data (such as sensor data) stored in RAM
- characteristics contain **descriptors** 8-bit bitfield, (along with the additional two bits in the extended properties descriptor) which contain the operations and procedures that can be used with the characteristic [1].
- **Permissions:** determine whether attribute value can be written to, read, or both (encryption is the security level for accessibility of the client) [1] /* characteristics definitions */

art Rate Service				{
	Handle	UUID	Permissions	Value
ervice	0x0021	SERVICE	READ	HRS
Characteristic	0x0024	CHAR	READ	NOT 0x0027 HRM
	0x0027	HRM	NONE	bpm
Descriptor	0x0028	CCCD	READ/WRITE	0x0001
Characteristic	0x002A	CHAR	READ	RD 0x002C BSL
	0x002C	BSL	READ	finger

static at_ble_characteristic_t chars[] = {

), /* handle stored here */

AT_BLE_UUID_16, {0xE1, 0xFF}}, /* UUID */
AT_BLE_CHAR_READ | AT_BLE_CHAR_WRITE_WITHOUT_RESPONSE | AT_BLE_CHAR_NOTIFY, /* Properties */
(uint8_t *)"char1", sizeof("char1"), 100, /* value */
AT_BLE_ATTR_READABLE_NO_AUTHN_NO_AUTHR | AT_BLE_ATTR_WRITABLE_NO_AUTHN_NO_AUTHR, /* permissions */


NULL, 0, 0, /* user defined name */ NULL, /* presentation format */ AT_BLE_ATTR_NO_PERMISSIONS, AT_BLE_ATTR_NO_PERMISSIONS, AT_BLE_ATTR_NO_PERMISSIONS, 0,0,0, /* Handles */

*See "Advanced Attribute Concepts" and "Service and Characteristic Discovery Features" in text

GATT PROFILES (CONTINUED)

After adding the services and characteristics of the HM-10 (FFEO and FFE1), adding the characteristic "properties" to read/write without response/notify" emulates the HM-10 allows the user to connect to Arxterra, as shown in figure 8.

Changing the "value" in the characteristic definition allows the user to send custom data

Figure 8. Arxterra Connection

BTLC1000 EXTERNAL FLASH

5.3.1. External Flash

ATBTLC1000 Xplained Pro provides a footprint for an external flash (U103), the design is tested with an ISSI *IS25LD020-JNLE* 2Mb flash. By default the flash is connected to the SPI Master/Slave interface of the ATBTLC1000 module, which is also connected to the Xplained Pro extension header.

The SPI Flash master interface of the ATBTLC1000 can also be used to control the external flash by reconfiguring the jumper straps (J109-J112) as below.

External flash Configuration 1:	ATBTLC1000 SPI0 peripheral connected (default)		
	Short straps J109, J110, J111, and J112		
	Open straps J113, J114, J115, and J116		
External flash Configuration 2:	ATBTLC1000 SPI flash peripheral connected		
	Short straps J113, J114, J115, and J116		
	Open straps J109, J110, J111, and J112		

Refer to Design Documentation and the ATBTLC1000-MR110CA datasheet for further reference.

Table 5-5 External Flash Pin Configuration

Extern	ernal flash Configuration 1, ATBTLC1000 signals		Configuration 2, ATBTLC1000 signals				
Pin	Name	Pin	Name	Function	Pin	Name	Function
1	CE#	12	LP_GPIO_12	SPI0_SSN	21	LP_GPIO_16	SPI Flash SSN
2	SO	14	LP_GPIO_13	SPI0_MISO	23	LP_GPIO_18	SPI Flash RxD
5	SIO	11	LP_GPIO_11	SPI0_MOSI	5	LP_GPIO_3	SPI Flash TxD
6	SCK	10	LP_GPIO_10	SPI0_SCK	4	LP_GPIO_2	SPI Flash SCK

See "SAM L21E / SAM L21G / SAM L21J DATASHEET COMPLETE" [3]

WORKS CITED

- Townsend, Kevin; Cufí, Carles; Akiba; Davidson, Robert (2014-04-30). Getting Started with Bluetooth Low Energy: Tools and Techniques for Low-Power Networking (Kindle Locations 675-677). O'Reilly Media. Kindle Edition.
- 2. A BLE Advertising Primer. (2016). Retrieved from:http://www.argenox.com/bluetooth-low-energy-ble-v4-0development/library/a-ble-advertising-primer/
- 3. SAML21 Complete. (2016). Retrieved from: http://www.atmel.com/devices/ATSAML21J18B.aspx