Preliminary Design Review

BY LAM NGUYEN (PROJECT MANAGER) HAL VONGSAHOM (SYSTEM ENGINEER) TAYLOR FARR (ELECTRONICS AND CONTROLS ENGINEER) AARON CHOI (MANUFACTURE ENGINEER)

Program Objectives/Mission Profile

The Fall 2016 Velociraptor is inspired by the biped Titrus-III robot developed by the Tokyo Institute of Technology. The Fall 2016 Velociraptor is the third generation biped robot and we're expanding from previous semester's design.

Mission Profile

- The Fall 2016 Velociraptor is the 3rd Generation biped robot
- Inspired by the Titrus III by the Tokyo Institute of Technology
- Participate in the Game: Save the Human
 - Walk
 - Balance itself on an incline
- 3DoT board incorporated to the design

Program Objectives

Customer's Expectation

- 1. Utilize the 3DoT Board as our microcontroller
- 2. Use the Arxterra Control Panel by using tele robotic communication
- 3. Motors instead of Servos

Design Innovation

Creativity Exercise:

- Balance
- Feet Design
- Walking Linkages

Balance:

- Animatronic Tail
- Planar Manipulation

Feet Design:

- Materials under feet
- Human-Like Walking

Walking Linkages:

- Jansen's Linkages
- UCI Linkages

Animatronic Tail

- 1. Balancing capability
- 2. Able to shift the center of mass (left, right, up, or down)

Animatronic Tail (Other options)

Planar Manipulation

- Have a mechanical design along certain axis for balance
- Rotate the gears to manipulate the head and tail to get (left, right, up, and down)
- Simple design

Foot Design

- Grip tape
- Rubber
- Mesh

Foot Design

Kinesiology-Based Robot Foot Design for Human-Like Walking

Enhance Performance and stability

Jansen's Linkage

Theo Jansen's Strandbeest

- Models Humanoid Gait Motion
- Actuation on Single Joint

A. Weil 2009

Walking Linkages

 "Each are single degree-offreedom and would be driven by a single crank rotating at constant angular velocity."

-Mark Plecnik (UCI Professor)

Prototype of Six-bar Compliant Leg Module

Human Gait Motion

Requirements & Verification

Level 1 Program Requirements

CSULB Fall 2016 Velociraptor ...

- 1. Shall cost no more than \$400.00 [1] [2]
- 2. Shall participate in the **Game: Save the Human** provided by the Game Committee and the customer [3]
- Shall demonstrate its capabilities on the final day of school, Wednesday, December 14, 2016 [4]

August 31, 2016

Level 1 Program Requirements Resources

[1] Khoivu0814. (2016). Retrieved September 21, 2016, from <u>http://www.arxterra.com/spring-2016-velociraptor-preliminary-project-plan/</u>

[2] Plaulsible. (2015). Retrieved September 23, 2016, from <u>http://www.arxterra.com/fall-</u> 2015-microbiped-preliminary-project-plan/

[3] Paul Ahumada. (2016). Retrieved October 05, 2016, from <u>http://arxterra.com/fall-</u> 2016-game-save-the-human/

[4] Time, B. C. (n.d.). Final Exam Fall 2016 Schedule Charts. Retrieved September 21, 2016, from http://web.csulb.edu/depts/enrollment/registration/final_exam/fall_chart.html

Level 1 System Requirements

The CSULB Fall 2016 Velociraptor shall...

- 1. Resemble a Theropoda Dinosaur [1]
- 2. Statically walk [2]
- 3. Dynamically walk [2]
- 4. Use Bluetooth to communicate with the Arxterra Control Panel [3]
- 5. Use a 3DoT board with a custom i2C shield [3]
- 6. Navigate through the game terrain provided by the game committee [4]

Level 1 System Requirements (Continued)

The CSULB Fall 2016 Velociraptor shall navigate through the game terrain provided by the game committee shall...

- 1. Utilize a foot design capable of traction of all surfaces [4]
- 2. Navigate on uneven surface height no larger than 0.5 cm [4]
- 3. Use a battery to sufficiently power the biped robot for the duration of the game [4]

Level 1 References

[1] Theropod dinosaurs - Google Search. (n.d.). Retrieved September 23, 2016, from https://www.google.com/search?q=Theropod dinosaurs
[2] Robotics/Types of Robots/Walkers. Retrieved October 05, 2016, from https://en.wikibooks.org/wiki/Robotics/Types_of_Robots/Walkers
[3] 3DoT. (n.d.). Retrieved October 05, 2016, from http://www.arxterra.com/3dot/
[4] Paul Ahumada. (2016). Retrieved October 05, 2016, from

http://arxterra.com/fall-2016-game-save-the-human/

Level 2 requirements

- The velociraptor shall have two feet to support a mass of the robot which shall not exceed 900 grams.
- 2. The velociraptor shall implement a control system [PID] that should shift the center of gravity along the axis of the legs (left and right). The center of gravity shall be controlled by two servo that c ontrols both head and tail.
- 3. The acceleration of the Velociraptor head and tail movement shall not exceed [to be calculated in m/s^2] to avoid the velociraptor tipping point, and falling down.
- 4. The velociraptor shall have a threaded rod be placed horizontally with respect to head and tail. The length of the threaded rod [to be determine cm], and thickness [to be determine mm] to ensure it fits in the body. The threaded rod shall move along the axis of the head, tail, and body to shift the center of gravity.
- 5. The velociraptor shall utilize DC motors [to be determine] for continuous static and dynamic movement.
- 6. The velociraptor shall shift the center of gravity over the leg while statically walking. The center of gravity shall be within a region of stability of [to be calculated] mm from the center of the foot.

Level 2 Requirement (continued)

- 1. The velociraptor shall use a gyroscope which tracks X, Y, and Z angles and transmit input data to the MCU.
- 2. The velociraptor shall implement an accelerometer which tracks acceleration in the X, Y, and Z planes.
 - 1. The Velociraptor shall implement an IMU MPU-6050 to communicate with the I2C at a frequency rate of [to be determined] Hz. The MPU-6050 will collect input data and implement that into the control system.
- 3. The velociraptor shall utilize HC-06 Bluetooth to communicate with the Arxterra control panel at a maximum range of 12 feet.
- 4. The Velociraptor shall implement a motor controller [to be determined what kind] on the motor shield that communicates to the I2C at the frequency rate [to be calculated] Hz.
- 5. The velociraptor shall utilize the two servos for the head and tail through the 3DoT board.
- 6. The velociraptor shall use 2 batteries to power the 3DoT Board and motor shield.

Level 2 requirement continue..

- 1. The Velociraptor shall be able to continuously operate in game arena for minimum one hour.
- 2. The IMU shall send input data to the control system when encountering uneven surfaces, inclines, and declines.
- 3. The model of the foot [to be decided] design shall have a surface area of [to be calculated] in order to provide stability and not put stress on movement.
- 4. The material for the traction of foot [to be determined] shall provide enough friction on all surfaces [study to be shown] of game terrain to prevent raptor from falling over.
- 5. The Velociraptor shall be able to turn left or right from 0 360 degrees, standing on foot while not walking.

Product Breakdown Structure

► The structural of the project.

Software Design

Software Block Diagram

Electronic System Design

System Block Diagram

 The 3rd servo will added through the I2C bus.

Interface Definitions

- Complete interface matrix
- The pin mapping data was collected directly from the Arduino website.

	Arduino Leonardo pin mappi	ng table	Details			
PIN#	Pin Name	Manned Pin Name				
1	PE6 (INT.6/AINO)	Digital pin 7				
2	Uvec	5V	1			
3	D-	BD-	1			
4	D+	BD+	1			
5	UGnd	UGND	1			
6	Ucap	UCAP	1			
7	VUSB	Vbus	1			
8	(SS/PCINT0) PB0	RXLED	1			
9	(PCINT1/SCLK) PB1	SCK	1			
10	(PD1/PCINT2/MOSI) PB2	MOSI	1			
11	(PD0/PCINT3/MISO) PB3	MISO	1			
12	(PCINT7/0C0A/0C1C/#RTS) PB7	Digital pin 11(PWM)	1			
13	RESET	RESET				
14	Vee	5+	Po	wer		
15	GND	GND	Gro	und		
16	XTAL2	XTAL2				
17	XTAL1	XTAL1				
18	(OC0B/SCL/INT0) PD0	Digital pin 3 (SCL) (PWM)	I2C PC9685 (SCL)	(SCL1) IMU sensor		
19	(SDA/INT1) PD1	Digital pin 2 (SDA)	I2C PC9685 (SDA)	(SDA1) IMU sensor		
20	(RX D1/AIN1/INT2) PD2	Digital pin 0 (RX)	Bluetootł	Receiver		
21	(TXD1/INT3) PD3	Digital pin 1(TX)	Bluetooth	Transmitter		
22	(XCK1/#CTS) PD5	TXLED				
23	GND1	GND	-			
24	AVCC	AVCC				
25	(ICP1/ADC8) PD4	Uigital pin 4	Head & I	ail servo		
26	(11/#UC4D/ADC9)PD6	Digital pin 12	-			
27		Digital Pin (PWP)	-			
28			4			
23	(PCINT/UCIA/#0040/ADC12) PD5	Digital Pin 5 (PWM)	-			
30		Digital Pin (PWM)	0-0			
22		Digital Pin 5 (PWM)	005	servo		
32	(ICFSICEROI)OC4A) FC1		-			
34	(#TWD)FE2	57	1			
35	GND2	GND	1			
36	(ADC7/TDI) PE7	Analog In 0	DC moto	r Left Lea		
37	(ADC6/TD0) PF6	Analog In 1	DC motor	Right Leg		
38	(ADC5/TMS) PF5	Analog In 2				
39	(ADC4/TCK) PF4	Analog In 3	1			
40	(ADC1) PF1	Analog In 4	1			
41	(ADC0) PF0	Analog In 5	1			
42	AREF	AEF				
43	GND3	GND				
44	AVCC1	AVCC				

Interface Definitions

Simplify Interface Matrix, "3Dot Board"

- ▶ This interface matrix is map to the 3 Dot board.
- ▶ The third servo is to be map to an I2C pin.

			h	nterfac	e Mat	rix						
Pin # 🔽 3Dot Board	Bluetooth HC-06	🕶 IMU - MPU6050 🔄	PCA9685	GM6-1	GM6-2 💌	HS-6 💌	HS-645MG-2	HS-645MG-26	battery 1	baterry 2	Boost Converte	LDO 🔽
1 5V											5V	
												3V3
2 3V3	3V3	3V3	3V3			3V3	3V3	3V3			3V3	OUT
3 RX	RX											
4 TX	TX											
5 12C (SCL)		SCL	SCL									
6 I2C (SDA)		SDA	SDA									
				IN								
7 Motor 1A				JP2-P2								
				OUT								
8 Motor 1B				JP2-P1								
					IN							
7 Motor 2A					JP3-P2							
					OUT							
8 Motor 2B					JP3-P1							
						IN						
10 Servo 1						JP7-3						
							IN					
11 Servo 2							S1-3					
12 Servo 3								PWM				
												3V7
13									3V7	3V7		IN
14												
15 GND	GND	GND	GND			GND	GND	GND	GND	GND	GND	

Mechanical Design

Complete 3D Model

Measurements

Leg Design: Theo Jansen's Linkage

- Eight-Bar Mechanism
- Single rotation crank
- Smooth walking motion

Design and Unique Tasks

Leg Design: Initial Idea

Leg Design: Current Design

Jansen's Linkage

Leg Design v1.3

Leg Design v1.6

3D Model Simulation

Torque Calculations for DC Motors

Requirement: The velociraptor shall have two feet to support the full mass of the robot of 900 grams.

- Mass of the robot ~ 1kg
- Force(gravity) = Mass*g = 1kg*9.8m/s^2 = 9.8 N
- Radius of turn shaft for legs = 7mm
- Force of friction = μ *Force(gravity) = 0.5*9.8N = 4.9N
- Force(Total) = 9.8N + 4.9N = 14.7N
- Torque = 0.007m*14.7N = 0.1029 Nm = 14.6 oz-in

Speed Calculation

- Area of the terrain = 12ft x 5ft
- ▶ Time of game = 1hr
- ▶ 60ft/hr = 12 inches/min
- The velociraptor moves about 0.5 inches/step
- In order for the velociraptor to be able to navigate the entire arena, it should move at a speed of 24 steps/min = 24rpm

DC Motor Trade off Study

Requirement: The velociraptor shall have two feet to support the full mass of the robot of 900 grams.

Motor	Voltage (Volts)	Spee d (RPM)	Torque (Oz-in)	Current (mA)	Weight (grams)	Price	Referenc e
Gear Motor 8 by Solarbotics	5	70	43	57.6 (670 stall)	32	\$5.75	[1]
Gear Motor 9 by Solarbotics	5	66	43	73.2 (670 stall)	34.1	\$5.25	[2]

Motor References

- [1] <u>http://www.robotshop.com/en/solarbotics-gm8-gear-motor-8-offset.html</u>
- [2] <u>http://www.robotshop.com/en/solarbotics-gm9-gear-motor-9.html</u>

Servo Calculations

- Mass of head = Mass of Tail = 150g
- Force $(gravity) = (0.150 \text{ kg})^*(9.8 \text{ m/s}^2) = 0.0153 \text{ N}$
- Radius = 6 cm
- Torque = (0.0153N)*(0.06m) = 0.000918 Nm = 0.13 oz-in

Servo Motors Requirement:

Servo	Torque (oz- in)	Weight (grams)	Speed (sec/60°)	Price	Reference
HS-422 Servo Motor	57	45.5	0.16	\$9.69	[1]
HS-645MG Servo Motor	133	55.2	0.20	\$28.59	[2]
HS-485HB Servo Motor	72	45	0.20	\$14.99	[3]

Servo references

- ▶ [1] <u>http://www.robotshop.com/en/hitec-hs422-servo-motor.html</u>
- [2] <u>http://www.robotshop.com/en/hitec-hs645mg-servo-motor.html</u>
- [3] <u>http://www.robotshop.com/en/hitec-hs-485hb-servo-motor.html</u>

Fritzing

Work Breakdown Structure

Project Schedule

Project Status

Challenges:

- Tests/Experiment
- 3D Modeling
- Simulation
- Trade Off Studies
- CDR Presentation

- . Top Level Schedule
- 2. System and Subsystem Level Tasks

Top Level Schedule

Projec	tLibre 🗋 🗖 ^ 🤌)					
OPEN	ROJ File	Task Reso	ource \	/iew			
Save 🔏	Open (P) Close New Save as File	 Print Preview PDF Print 	Projects	 Information Calendar Projects Dialog Project 	Save Baseline Clear Baseline Update		
0		lame		Duration	Start		Finish
1	Project Miles	tones		80 days?	8/24/16 8:00 A	١M	12/14/16 8:00 AM
20 21 ✓ 24 29 36 48 49 55 59 60 65 68 73 78 82 87	Project Project Plan Level 1 Redu Design Docu System Subsystem Electronic D Mechanical Experiemen Trade-Off S Rapid Prot 3D Model Preliminary Critical Desi 3D-Printina Assembly	nina irements mentation Desian ts Studies otvpina Desian an		76 days? 6 days? 33 days? 61 days? 59 days? 9 days? 14 days? 24 days? 10 days? 11 days? 10 days? 10 days? 10 days? 10 days?	8/31/16 8:00 / 9/7/16 8:00 A 8/31/16 8:00 A 9/14/16 8:00 A 9/8/16 8:00 A 9/23/16 8:00 A 9/28/16 8:00 A 9/28/16 8:00 A 10/27/16 8:00 10/12/16 8:00	AM M AM AM AM AM AM AM AM AM AM AM AM AM	12/14/16 5:00 PM 9/14/16 5:00 PM 10/14/16 5:00 PM 12/7/16 5:00 PM 10/26/16 5:00 PM 10/26/16 5:00 PM 10/12/16 5:00 PM 10/26/16 5:00 PM 10/26/16 5:00 PM 10/12/16 5:00 PM 10/11/16 5:00 PM 11/9/16 5:00 PM
90 93	Purchase co Demonstrati	omponents on		16 days? 36 days?	11/10/16 8:00 10/26/16 8:00	AM AM	12/1/16 5:00 PM 12/14/16 5:00 PM

System and Subsystem Level Tasks

System Engineer (Hal Vongsahom)

- Learn C++ programming language for the 3DoT board
- Generate system resource report (Mass, Power, Cost)
- Continue refining level 2 system requirements
- Verification and Validation test plan

Electronic & Controls (Taylor Farr)

- Research servo, motor specification and conduct a trade off study
- Research power subsystem requirements
- Generate Fritzing diagram
- Circuit schematic in Eagle CAD

System and Subsystem Level Tasks (continued)

Manufacturing & Design Engineer (Aaron Choi)

- Complete the 3D Model of the Velociraptor on Solidworks
- Simulate the walking movement on Solidworks
- Coordinate with E&C for PCB design

Burn Down and Project Percent Completion

Aug 29, '16 Sep 5, '16 Sep 12, '16 Sep 19, '16 Sep 26, '16 Oct 3', '16 Oct 10, '16 Oct 17, '16 Oct 24, '16 Oct 31, '16 Nov 7, '16 Nov 14, '16 Nov 21, '16 Nov 28, '16 Dec 5, '16 Dec 12, '16 Start Finish							Today											
Start Add tasks with dates to the timeline Finish		Aug 29, '16	Sep 5, '16	Sep 12, '16	Sep 19, '16	Sep 26, '16	Oct 3, '16	Oct 10, '16	Oct 17, '16	Oct 24, '16	Oct 31, '16	Nov 7, '16	Nov 14, '16	Nov 21, '16	Nov 28, '16	Dec 5, '16	Dec 12, '16	
AUD JASKS WID DALES TO THE IMPILIE	Start							A d d to d to u	uitle elettee te	the stress to	0						Finish	1
wed 6/24/16 wed 12/14/1	Wed 8/24/16							Add tasks v	vith dates to	o the timelin	е						Wed	12/14/16

Wed 8/24/16 - Wed 12/14/16

WORK BURNDOWN

Shows how much work you have completed and how much you have left. If the remaining cumulative work line is steeper, then the project may be late. Is your baseline zero?

TASK BURNDOWN

Shows how many tasks you have completed and how many you have left. If the remaining tasks line is steeper, then your project may be late.

Try setting a baseline

Learn more

Power report

- All the data was collected from the manufacture website except for the 3Dot board. Data for 3Dot was collected from measurement of last semester.
- ▶ The servo and DC motor will consume the most Amps.

			Power Report				
Resource	Quantity	Minimum Current Draw (mA)	Maximum Current Draw (mA)	Measured Current Usage (mA)	uncertainty (%)	Margin(±mA)	
Servos (HS-645MG)	3	18.2	1350		25%	270	
Accelormeter/Gyroscope (MPU6050)	1	0.115	3.9		20%	0.2	
I2C (PCA-9685)	1	6	10		20%	5	
3Dot Board	1	20	200		20%	40	
DC motor (RM2)	2	155	900		25%	200	
Project Allocation							4000 mAh
Total Margin							515.2 mA
Total Expected Current Consumption							2463.9 mA
Contingency							2051.3 mA

Mass Report

- The weight of the frame will weigh the most.
- ► The second contributor to weight are the three servos.

			Mass Report				
Resource	Quantity	Indidvidual Weight (g)	Expected Weight (g)	Actually Weight (g)	uncertainty (%)	Margin(±g)	(g)
Servos (HS-645MG)	3	55	165		25%	20	
Accelormeter/Gyroscope (MPU6050)	1	3	8.5		15%	5	
I2C (PCA-9685)	1	5.5	5.5		20%	5	
3Dot Board	1	15	15		5%	5	
DC motor (GM6)	2	18	36		20%	20	
Battery (CR123A/16340/2000mA)	2	8.5	17		20%	20	
Frame (body, head, tail,legs)	1	450.9	450.9		25%	50	
Threaded Rod		50	50		15%	10	
Project Allocation							900
Total Margin							155
Total Expected Weight							747.9
Contingency							307.1

Cost Report

- ▶ The most expensive item will be the frame.
- ▶ The prototype will cost as much as the frame.
- > The 3 servo is the 3^{rd} expensive component.

		C	ost Report				
Resource	Quantity	Expected Cost (\$)	Actual Cost (\$)	Uncertaintty (%)	Margin(±\$)	(\$)	Source
Servos (HS-645MG)	3	45		25%	8		Robotshop.com
Accelormeter/Gyroscope (MPU6050)	1	4		20%	6		Newegg.com
I2C (PCA-9685)	1	15		25%	6		Adafruit.com
3Dot Board	1	Included	Included	0%			G. Hill
DC motor (GM6)	2	5.75		25%	8		Polulu.com
Battery (CR123A/16340/2000mA)	2	16		20%	10		Ebay.com
PCB Printing		40		25%			Arxterra.com
Prototype	1	47		25%	10		Arxterra.com
Frame (body, head, tail)	1	47		25%	10		Arxterra.com
Threaded rod	1	5		25%	5		Grainger.com
Project Allocation						400	
Total Margin						63	
Total Expected Cost						224.75	
Contingency						238.25	

Resource Report Resources

- 1. <u>https://www.pololu.com/product/182/specs</u>
- 2. https://www.cdiweb.com/datasheets/invensense/PS-MPU-6000A.pdf
- 3. https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
- 4. <u>http://www.arxterra.com/spring-2016-3dot-spider-bot-preliminary-design-document/</u>
- 5. <u>https://www.bhphotovideo.com/bnh/controller/home?O=&sku=1018868&gclid=Cj0KEQjw1K2_BRC0s6</u> <u>jtgJzB-aMBEiQA-WzDMZ4G93fpLNmiUX-</u> <u>CGjONHm0czidWkbbSiUMk3B_luoAaAqM68P8HAQ&Q=&ap=y&m=Y&c3api=1876%2C92051678402%2</u> <u>C&is=REG&A=details</u>
- 6. <u>http://www.arxterra.com/spring-2016-velociraptor-project-summary/#Size_Weight</u>
- 7. <u>https://www.grainger.com/category/threaded-rods/bolts/fasteners/ecatalog/N-8k5</u>
- 8. <u>http://www.ebay.com/itm/2x-2000mAh-16340-Rechargeable-Li-ion-Battery-For-LED-Flashlight-CR123A-Charger-/152231509443?</u> trksid=p2141725.m3641.l6368
- 9. <u>http://www.robotshop.com/media/files/pdf/hs645mg.pdf</u>
- 10. <u>http://web.csulb.edu/~hill/ee400d/Technical%20Training%20Series/3DoT%20Datasheets/3DoT_Schem</u> atic.pdf
- 11. <u>https://www.arduino.cc/en/Hacking/PinMapping32u4</u>