Programming with AVRISP Mkii

Table of Contents

1. Installing USB Drivers for AVRISP Mkii
Connecting to a microprocessor

AVR Studio 4 environment

Restoring Arduino Firmware

Reading a .hex File

aR0DN

Page 1 of 12

1. Installing the USB Drivers

The first step is to install the USB drivers for the AVRISP mkii. This is done during initial
install or can be done by modifying the installed program (see guide: USB Driver Installation
Guide). Atmel recommends installing the USB drivers BEFORE plugging the USB into the
ISP (I didn’t experience any problems with plugging it in beforehand other than it not being
usable). If the USB drivers are installed correctly, when plugged in, the AVRISP internal led
will be solid green, and external led will be solid red. If the drivers are not installed, the
internal light should blink once and then stay off.

2. Connecting to a Device
An ISP will communicate with a target device through the SPI using the pins for MOSI, MISO,
VCC, GND, SCK, and RESET.

T
|(PCINT14/RESET) PCS T 1 28 [PC5 (ADC5/SCL/PCINT13)
(PCINT16/RXD) PDO L] 2 27 [PC4 (ADC4/SDA/PCINT12)
(PCINT17/TXD) PD1 [3 26 [1PC3 (ADC3/PCINT11)
(PCINT18/INTO) PD2 [4 25 (1 PC2 (ADC2/PCINT10)
(PCINT19/0C2B/INT1) PD3 [5 24 1 PC1 (ADC1/PCINT9)
(PCINT20/XCK/T0) PD4 [6 23 [PCO (ADCO/PCINTS)

GND 8 21 [JAREF
(PCINT6/XTAL1/TOSC1) PB6 [] 9 20 [J AVCC
(PCINT7/XTAL2/TOSC2) PB7 [10 190

(PCINT21/0COB/T1) PD5 O] 11 18 (PB4 (MISO/PCINT4)
(PCINT22/0COA/AINO) PD6 [12 170
(PCINT23/AIN1) PD7 [] 13 16 [1PB2 (SS/OC1B/PCINT2)
(PCINTO/CLKO/ICP1) PBO [14 15 [1 PB1 (OC1A/PCINT1)

This is the pin layout for a typical DIP AVR microprocessor (ATMEGA 168 or 328) with the
connections highlighted to correspond with the following picture. A DIP can easily be
programmed on a breadboard as long as you provide an external clock source (16Mhz
crystal) and supply voltage to the microprocessor. The AVRISP mkii will NOT provide power
to the microprocessor.

Page 2 of 12

http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fwebdoc%2Favrdragon%2Favrdragon.section.gnj_dsd_lc.html&sa=D&sntz=1&usg=AFQjCNGKm0-zjmD28JngnkTrlyr4zIOdvw
http://www.google.com/url?q=http%3A%2F%2Fwww.atmel.com%2Fwebdoc%2Favrdragon%2Favrdragon.section.gnj_dsd_lc.html&sa=D&sntz=1&usg=AFQjCNGKm0-zjmD28JngnkTrlyr4zIOdvw

This is the plug of the ISP with
the pins marked and color coded.
Note one end of the ribbon cable
is colored red to help with
orientation (on the side with VCC
and MISO).

o.oo;,oooo.... _ ON

BimL2:

Many PCBs that incorporate microprocessors will also include an ICSP header (Arduino
Duemilanove shown) which is where ISPs will be connected. This allows a user to reprogram
a microprocessor without removing it from the board, and in the case of a surface mounted
chip, makes programming much easier. Note the white dot in the corner (next to MISO) which
signifies the orientation of the header. The proper connection is made when the red wire on
the AVRISP ribbon cable is in the same orientation as the dot. For this picture, the red wire
would be on the top and the ribbon cable would extend to the right.

Page 3 of 12

However you have done it, if the target device is connected correctly and powered, the
external led of the AVRISP should now be solid green. At this point you can start
communicating with the target device provided that it has an external clock source.

No power :(Power Provided :)

If you are programming a chip on a breadboard, this setup is recommended to provide an
external clock to the microprocessor. The wires leading up will connect to the proper ISP
pins. The crystal used in this case is 16 MHz and the capacitors are 22pF.

Page 4 of 12

3. AVRStudio4 Environment
| will provide a small walkthrough for the AVR Studio v4.18.692 environment, but this was the

guide that | used initially and provides more detailed information (link below).
http://www.societyofrobots.com/member_tutorials/book/export/html|/290

File Project Build View Tools Debug Help
DE @ 0 8 a9 oG dh 6% 4%

|Trace Disabled '| Qﬁ %

EmEY ol

Ak
(10|
up
il

< [t=]]

‘ Mame

To open the programming window, select Tools >> Program AVR >> Connect... or press
the ‘AVR’ button on the toolbar.

L= J

Platfarm: Part;

AR OME! ~ IJSE
STKEDD [Connect...]
cgas [Cancel]

AVRISP mkll
R Baud rate:

JTAGICE mkll

4R Dragon | 115200 -]
AVRISP = Baud rate changes are
active immediately.

Tip: To auto-connect to the programmer used last time, press the 'Programmer’
button on the toolbar.

M aote that a tool cannot be uzed for programming as long as it iz connected in
a debugging seszion. In that caze, select 'Stop Debugging' first.

[Digconnected Mode...]

The window that opens will give you a selection of connections. For this example we are
using AVRISP mkii through a USB port. Press Connect... to continue.

Page 5 of 12

http://www.google.com/url?q=http%3A%2F%2Fwww.societyofrobots.com%2Fmember_tutorials%2Fbook%2Fexport%2Fhtml%2F290&sa=D&sntz=1&usg=AFQjCNFH67V7ymuwVBO3RsNTL0yq_a1L_g

AVRISP mkdl in ISP

Main |F‘mg|E|m | Fuses | LockBits I Advanced | HW Settings | HW Info |.Pu_rtu |

Device and Signature Bytes
[.HTmegaBZU-i "] Erase Device

Signature not read Fead Signature

Programming Mode and Tanget Settings

ISP mode - Settings..
ISP Frequency: 125.0kHz

Detecting on "USE"...
AVRISP micll with seral number 000200213115 found.
Getting isp parameter.. S0=00& .. OK

From the ‘Main’ tab, you can select the connected microprocessor (ATmega32U4 for
Arduino Leonardo). From here you can erase the contents of the chip, leaving FPM empty.

Note: If you are planning to upload through AVRDUDE or use Arduino IDE, you
should not erase the chip as this will remove the Arduino firmware, making the chip
unresponsive in the Arduino IDE. If you accidentally remove the firmware, | provide a
quick guide for restoring it in the next section.

In the Settings... you can adjust the ISP frequency. It is required that you use a frequency
which is less than V4 that of the target device. | am using ATMega32U4 which has an
internal clock of 16 MHz so the default of 125 kHz is fine. A higher ISP frequency will allow
you to read/write to targets faster, but going above V4 of the target frequency may cause
problems with communication.

Page 6 of 12

AVRISP mk in ISP

Main | Program | Fuses | LockBits | Advanced | HW Settings | HW Info | Auto |

Device
Erase device before flash programming Verfy device after programming
Flagh

Use Cument Simulator/Emulator FLASH Memony
i@ Input HEX File Cr\Users\Dongus'Desktop'optiboot_atmega328 hex E]

[rowen | [vew) [e]

EEPROM
Use Cument Simulator/Emulator EEFROM Memony
i@ Input HEX File E]

Pogam | | Vedty | [Read |

ELF Production File Format

Input ELF File: E]

Save From: [V] FLASH [¥]EEPROM [C]FUSES [C]LOCKBITS Figes and lockbits settings

must be specified before
[Program] [Save] saving to ELF

Detecting an "USE"...
AVRISP micll with seral number 0002002131159 found.
Getting isp parameter.. S0=0& .. OK

Under the “Program” tab of the programming window, you may select a hex file to be
written to the FPM of the device.

Another useful tool is to read the FPM from the device to a .hex file which can be opened

in a basic text editor. | will provide examples and explanations of reading devices in the last
section.

Page 7 of 12

It is kind of hard to tell from the picture, but while the device is being read from or written to,
the green internal LED will strobe periodically and the external LED will be solid orange.
When the process is done, the ISP’s leds will both be solid green.

Page 8 of 12

4. Restoring the Arduino Firmware

If you accidentally wiped the Arduino Firmware from a chip or would like to teach a chip to be
an Arduino, you can use the AVRISP mkii and AVRStudio4 to replace the code. If you
happen to have an extra Arduino laying around, you can repurpose it as an ISP and use it to
restore the bootloader to another Arduino.

Optimized Arduino Firmware
http://www.societyofrobots.com/member_tutorials/book/export/html/290

This link contains downloads for optimized boot codes (.hex files) for Arduino microcontrollers.
They use less room (allowing for larger sketches) and operate at higher baud rates, allowing
the uC to boot up and start its program quicker. These are NOT the original Arduino
firmwares.

Section 4 of this document (page 7) shows the setup for uploading the firmware to an Arduino
device. Make sure that the code you are programming to the board is the correct code for the
microprocessor used. Simply select the correct file and then press the button.

Restoring in Arduino IDE

The original Arduino firmware can be restored in the Arduino IDE using our AVRISP mkii or
ArduinolSP if you have a second Arduino board available (link below).
http://arduino.cc/en/Tutorial/ArduinolSP

Note: Using Arduino’s setup means that the Arduino used as an ISP WILL provide
power to the target device so you should NOT use external/USB power. Doing so may
run the risk of permanently damaging one or both of the Arduinos.

Page 9 of 12

http://www.google.com/url?q=http%3A%2F%2Fwww.societyofrobots.com%2Fmember_tutorials%2Fbook%2Fexport%2Fhtml%2F290&sa=D&sntz=1&usg=AFQjCNFH67V7ymuwVBO3RsNTL0yq_a1L_g
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FTutorial%2FArduinoISP&sa=D&sntz=1&usg=AFQjCNEQGsGQKrFY2h0hSbndNC_T-iguXg

5. Reading a .hex File

Most of this information is taken from the Wikipedia article on Intel HEX encoding (link below).
The code example is from Arduino Leonardo loaded with the “Blink” sketch and original
Arduino firmware.

http://en.wikipedia.org/wiki/Intel HEX

A record (line of text) consists of six fields (parts) that appear in order from left to right:

1.
2.

Start code, one character, an ASCII colon ":".

Byte count, two hex digits, indicating the number of bytes (hex digit pairs) in
the data field. The maximum byte count is 255 (OxFF). 16 (0x10) and 32 (0x20)
are commonly used byte counts.

Address, four hex digits, representing the 16-bit beginning memory address
offset of the data. The physical address of the data is computed by adding this
offset to a previously established base address, thus allowing memory
addressing beyond the 64 kilobyte limit of 16-bit addresses. The base address,
which defaults to zero, can be changed by various types of records. Base
addresses and address offsets are always expressed asbig endian values.
Record type, two hex digits, 00 to 05, defining the meaning of the data field.
Data, a sequence of n bytes of data, represented by 2n hex digits. Some
records omit this field (n equals zero). The meaning and interpretation of data
bytes depends on the application.

Checksum, two hex digits, a computed value that can be used to verify the

record has no errors.

Example 1: A single line from a .hex file.

D Start code D Byte count D Address I:I Record type D Data D Checksum

Page 10 of 12

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIntel_HEX&sa=D&sntz=1&usg=AFQjCNGsaq81ztisWT5bzj2g7lkb85zRWA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRecord_(computer_science)&sa=D&sntz=1&usg=AFQjCNFh7zhgFrSPjpjttI0bLIuCEZXrIg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FField_(computer_science)&sa=D&sntz=1&usg=AFQjCNGyGDhN7oeDh_BsraySe2-DWlz8kQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBig_endian&sa=D&sntz=1&usg=AFQjCNGECqx9N9TBeN_kuysggOJ6DkS4Og
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FChecksum&sa=D&sntz=1&usg=AFQjCNHw_y2Zgq7V1WgxxXn4EJJcpyKs8A

:10000000 0C9476010C949E010C949E010C949E011C

Byte no. 01 234506789 ABCDETF (lo total)

Example 2: Arduino Leonardo with “Blink” sketch programmed.

D Start code D Byte count D Address I:I Record type D Data D Checksum

Code from .hex file

Notes

:100000000C9476010C949E010C949E010C949E011C
:100010000C949E010C949E010C949E010C949E01E4
:100020000C949E010C949E010C94B20C0C94390D0E
:100030000C949E010C949E010C949E010C949E01C4
:100040000C949E010C949E010C949E010C949E01B4
:100050000C949E010C949E010C949E010C948D04B2
:100060000C949E010C94C6070C9414080C949E01E9

Beginning of File. The Address
is the byte address of the first
byte and data contains 0x10 (or
16) bytes per line. Data is the
code translated into machine
code. Record Type 00 is used for
data which is loaded to the
flash memory.

:1020700044004552524F523A2054454E53494F4E18
:102080004520332E3356004572726F726520667597
:10209000736500FFD8CBEF0100E1000000000000F5
:1020A0000101000000001107E909B006D706BE06CD
:1020B00039073D07000000004009E909D608070973
:1020C000E7083009000000009E0EES09400FFDOEFO0
:1020D000FOOEFFFFFFFFFFFFFFFFFFFFFFFFFFFELO
:1020EQ0OQOFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFOO
:1020FO000FFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFEEFOO
:10210000FFFFFFFFFFFFFFFFFFFFFFEFFFFFEFFFEFEOO
:10211000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFOO
:10212000FFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFEEFEO

This is the end of the code
uploaded through AVRDUDE. The
program uploaded occupies
addresses 0x0000 through 0x20D4
which is 8404 bytes. At the end
of the uploaded code, the data
is filled with OxFF which
indicates unused space.

:106FEOOQOFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBL
:106FFOOOFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAL
:1070000055C000006EC000006CCO00006ACO0000ET
:1070100068C0000066C0000064C0000062C00000DC
:1070200060C000005EC00000F2C400005AC0000052
:1070300058C0000056C0000054C0000052C00000FC
:1070400050C0000078C000004CCO00004ACO0000E2
:1070500048C0000046C0000044C0000042C000001C

This is the beginning of the
Arduino Boot section. Note that
it is located at the end of FPM
starting at byte address 0x7000

Page 11 of 12

:107FD0O00004C004C004300000000FFFFFFFFFFFFCC
:107FEOOOFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFAL
:107FFOO00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEOL
:00000001FF

The final byte address is O0x7FFF
which means there are 32,768
bytes or 32KB in the FPM
(ATMEGA32U4 used in example).

At the end of the file, the
Record Type = 0x01, indicating
that it is at the end of the
file.

Page 12 of 12

