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Abstract— In-space assembly can enable new types of 
spacecraft and structures which are too large or fragile to be 
carried on a rocket in an assembled form, and robotic systems 
can make in-space assembly feasible and cost-effective. Such 
systems should be able to assemble large and complex 
structures while imposing minimal launch mass and mission 
risk. We propose an autonomous robotic limb, henceforth 
referred to as “Limbi,” which is self-mobile and symmetric. 
Two identical electromechanical docking mechanisms serve as 
end-effectors. With either end-effector anchored to a base 
structure, the other can grab modular elements and attach 
them to the growing structure. Power and computing are 
provided by the spacecraft through these docks, enabling 
Limbi to walk end-over-end across the structure without a 
battery or tether. We have constructed and tested a prototype 
system in a planar workspace that demonstrates the mobility 
and assembly capabilities of the proposed limb. We also 
introduce the concept of “Limboids,” consisting of multiple 
Limbi robots temporarily attached to each other to form more 
complex kinematic chains. The resulting configurations are 
application-specific and can be tailored to the degrees of 
freedom, range of motion, and general dexterity required by a 
particular task. Because Limbi and Limboids can assemble 
large and complex structures with minimal robotic complexity, 
the development of this class of robots is a critical step forward 
in low-risk and lightweight assembly. 
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1. INTRODUCTION 
In this paper, we define an architecture for in-space 
assembly known as “Limbi.” The key features of the 
proposed architecture include end-over-end mobility with a 
single limb and semi-autonomous assembly of modular 
structures. A Limbi-style robot is powered and controlled 
through the structure it assembles, via electromechanical 
docks at either end of the limb, so that it does not require a 
battery or tether and can build indefinitely large modular 
structures. 

Physically, Limbi is a multiple degree-of-freedom serial 
kinematic chain. Both ends of Limbi are electromechanical 
docks which provide a rigid mechanical connection to 
structural elements while also offering an electrical interface 
to provide power to the limb via the structure. In the context 
of this paper, “end-over-end mobility” will refer to the 
ability for the limb to dock to a structure at both ends, then 
release itself at one end while still receiving power through 
the other end, and finally maneuver the free end to another 
docking point and repeat the process. A “module” is an 
independent and disconnected element of a structure, which 
can attach to other modules and serves as an electrical pass-
through to provide power to the limb. “Modular assembly” 
is the ability to manipulate and attach these modules to each 
other. The module-to-module interface does not need to be 
identical to the limb-to-module interface, but it does need to 
provide a mechanical and electrical connection between 
modules. 

The Limbi architecture is minimal in that it is fully capable 
of these mobility and assembly tasks, as a single unit, while 
using no more actuators than the necessary degrees of 
freedom defined by the structure’s geometry. This 
minimizes mass, complexity, and risk. Because limb power 
is provided through the structure, the limb can be untethered 
and does not require a battery. This allows it to work in an 
indefinitely large workspace, so the size of structures it can 
assemble is not limited by the robot.   

We also describe the mechanical and electrical design of a 
testbed prototype of a Limbi robot, which is used in our 
laboratory to test new docking mechanisms, control 
methods, and autonomy algorithms. We explain some of the 
lessons learned through development of this testbed 
prototype, which help inform the practical requirements for 
Limbi-style robots, and we outline a plan for adding new 
features and functionality to the prototype.  
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Figure 4: Left, the limb prepares to dock with a module. 
Right, the design for the representative modules. 

Although the prototype modules are cube-shaped, the 
architecture can support many different shapes and sizes of 
structural elements. The docks on the modules are identical 
to the end effectors on the limb, with a small exception for 
the scope of the demo. With a pre-planned assembly pattern, 
certain module cube faces did not need to feature a dock that 
could actively engage and disengage. As such, steel plates 
were used in place of some electromagnets to reduce the 
cost of the prototype. If this docking architecture is used 
again, the steel plates will be replaced with electromagnets 
so that the docks are truly androgynous. This would 
optimize re-configurability. 

System-level tests revealed unwanted compliance in the 
electromechanical docks when modules are assembled in 
long chains. This implies several important considerations 
for future hardware solutions. In order to reasonable model 
a set of assembled modules as a single body, it is necessary 
for the docks to react with sufficiently high forces and 
moments once engaged. Because structural elements can 
range in mass, shape, and size, a standardized docking 
system must be designed to be scalable, both in size and in 
number. Autonomous mating typically incorporates 
hardware compliance for error stack-up, which is not 
amenable to rigid docking. One possible solution is to add 
force/torque sensors to both ends of every limb so that 
active force control can be used to correct misaligned docks. 
The alternative is to utilize a two-part docking system, with 
a "soft dock" and a "hard dock" state. The soft dock would 
account for system misalignments, and the hard dock would 
increase the rigidity of the soft dock. 

Electrical Architecture 

The Schunk PowerCube actuators communicate over a 
Controller Area Network (CAN) Bus and draw power from 
common power and ground lines connecting all of the 
actuators. A 120-Ohm resistor on either end of the limb 
between the CAN-Hi and CAN-Lo wires satisfies the CAN 
protocol, which requires a net 60-Ohm resistance between 
CAN-Hi and CAN-Lo. A simplified electrical diagram 
showing the limb attached to two modules is shown in 
Figure 5. 

This bus architecture conveniently allows the limb to be 
connected to power and data at either end, or at both ends 
simultaneously. This supports Limbi’s end-over-end 
mobility. Initial concerns about small voltage differences on 

the power and ground lines, and about CAN timing 
differences when connected to both ends simultaneously, 
were alleviated through simple validation testing. If a future 
version of Limbi is longer by an order of magnitude, the 
timing differences may begin to cause communication 
problems and a different bus architecture will need to be 
used. 

The electromagnets on the ends of the limb itself are 
activated directly using digital output pins on the first and 
last PowerCubes. A HI signal opens a 60V N-type 
MOSFET allowing approximately 0.25 amps at 24V to 
power the electromagnet. Toggling the electromagnets 
inside the modules, for module-to-module docking, is 
slightly more complex because the modules themselves do 
not communicate over CAN (however, they can draw from 
the power supply). As a result, the limb must be able to turn 
on the electromagnet inside of a module, leave that 
electromagnet on even when the limb isn’t directly 
connected to the module, and disable it again if necessary 
for disassembly. This is accomplished by using an ATTINY 
8-pin microcontroller on a custom PCB inside the module to 
listen for a short HI pulse on the “signal” pin of the module. 
When the pulse is received, the ATTINY toggles the state of 
the electromagnet, again through a 60V N-type MOSFET. 
To turn the electromagnet inside a module on or off, the 
limb uses a second digital output pin on the first and last 
PowerCubes to send this short HI pulse to the dock’s signal 
pin while connected to the module.  

Figure 5: A simplified electrical diagram of the limb, as 
attached to two modules. The color-coding is the same as 

in Figure 3. 
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Figure 6: The visualization and simulatio
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3D Printed Assembly 

Many new space structures can be enabled by 3D-printing 
parts in space, so that the parts do not need to withstand 
high launch forces. Once these parts are printed, they must 
be assembled, which is an application for which Limbi 
would be well-suited as a lightweight mobile robot. 

Reconfigurable Rovers 

JPL specializes in robotic rovers for planetary exploration, 
and the Limbi concept would be particularly well-suited for 
a reconfigurable rover with a mobile arm. A set of docking 
points on the chassis would allow the arm to be positioned 
in a variety of positions and orientations, which could 
significantly extend the rover’s reachable workspace. For 
example, Limbi could be mounted on the front of the rover 
for surface sampling tasks, and then reposition itself to the 
top surface to distribute samples between difference 
instruments and tools. The limb could therefore be smaller 
and lighter than a fixed-base limb required to reach the 
entire workspace.  

Distributed Sensing Network 

High mission value could be gained by using Limbi robots 
to redistribute sensors on a spacecraft, or by using sensors 
already built into Limbi such as cameras to monitor 
spacecraft health. For example, a small Limbi robot could 
crawl around the outside of a re-entry vehicle to inspect 
ceramic tiles for damage, without requiring a much larger 
fixed-position arm. 

6. LIMBOID CONCEPT 
Limboids, which we define as a self-mobile robotic system 
that is fully reconfigurable at the limb level, are the next 
logical extension of Limbi. This system would not require 
passive elements (e.g. chassis, hubs, and scaffolding) and 
would be capable of reconfiguring itself, and thus it can 
adapt to changes in workspace requirements to remain 
effective at every scale without redundant components. In a 
typical use-case for Limbi, the singular limb is designed to 
be the optimal solution for assembling and maintaining a 
single spacecraft of preordained size and geometry. While 
this solution applies to a large subset of current in-space 
assembly and servicing tasks, there is still a need for a 
lightweight reconfigurable robotic system that can handle 
more general tasks on a variety of spacecraft and platforms. 
Limboids fill this necessity, as they are capable of both 
gross and dexterous manipulation at arbitrary scales and can 
thus be embedded in a factory setting with the assurance 
that they will continue to meet these demands over 
numerous spacecraft design cycles. Limboids can be 
decomposed into four primitive configurations, each with 
dedicated functionality. As is illustrated in the top four 
panels of Figure 8, these configurations consist of (a) 
multiple Limbi-type robots working in parallel to perform 
independent or cooperative operations, (b) limbs combined 
into an arbitrarily long serial chain to adapt to a changing 

workspace, (c) a walker-manipulator that can manipulate 
objects while moving, and (d) a torso with multiple arms for 
gross manipulation of large objects. Figures 8e and 8f show 
two examples of how a Limboid system would enable the 
same set of three independent limbs to perform two different 
tasks that would otherwise require multiple single-purpose 
robots. In first example, the primitive configuration 
illustrated in Figure 8a is used to assemble an indefinitely 
long chain of modules with Limb 1 holding and 
repositioning the chain while Limbs 2 and 3 grab and attach 
more modules. In the second example, the Limboid system 
reconfigures itself with Limbs 1 and 2 attaching themselves 
to the end of Limb 3, and proceeds to perform gross 
manipulation of a large object. The results of this paper have 
demonstrated two features of a Limboid system necessary to 
facilitate these processes. First, limbs can reliably navigate 
to docks in known locations, and second, the limb can draw 
power and communicate through the structure to which it 
attaches itself, thereby eliminating the need for an external 
tether anywhere in the system. Future work will expand 
these features to include a docking architecture that allows 
an indefinite number of limbs to attach at a single node and 
flexible control algorithms that can adapt to the ever-
changing kinematic models of Limboids.  
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Figure 6: Limboid configurations and example uses. 



 

 

Example use case: In-space factory 

Due to the high degree of re-configu
unmatched by existing robots, Limboids w
staffing in-space factories for spacecraft as
processing, or satellite maintenance.  

Automated factories on earth, such as 
automobile manufacturing, typically r
workforces of robotic arms that are fixed
mobile on rails. For most space applicatio
infeasible to launch such a large robotic w
may not be practical to maintain a hum
reconfigure the robots for different tas
preferable to use a smaller number of 
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this requirement for many types of factorie
Limbi robots could perform each of the follo

• Unpacking and assembling a modular
with a set of docking points where 
attach. 

• As a long serial kinematic chain, reach
factory floor to dock with an incoming s

• Unpacking spacecraft components or raw
incoming packages and delivering t
different workstations. 

• Assembling many varied modular com
an entire working spacecraft or satellite. 

• Wielding tools like grippers or drills to
scale dexterous manipulation. 

• Safely moving a large spacecraft aroun
breaking into separate Limbi modules a
part in many locations. 

• As a large multi-fingered gripper (where
single Limbi), Limboids could grab or tr
or chunks of asteroids.  

Figure 7: A rendering of Limboids being
a shipment of components on an in-spac
build a small satellite. Separable limbs

different colors. 
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Limbi and these tools.  
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Minimum Power Path Planning 

Power is a precious resource for space operations and must 
be conserved where possible. Closely related to the need for 
autonomy, a deployed Limbi system should be able to 
generate power-saving plans at both a high level (planning 
the optimal sequence of moves to assemble or walk around 
a structure) and a low level (searching for the shortest paths 
through joint-space to move from one position to the next).  

Integrated Vision System 

Cameras can be added to either or both ends of Limbi, and 
could be used for inspection of assembled components as 
well as navigation and control (i.e. ensuring precise 
alignment with visual targets on a dock).  

Wireless Communication 

The current testbed limb uses a CAN Bus for 
communication, which has performed well but requires two 
additional wires running through the entire structure and 
limb, as well as additional pins on the electromechanical 
docks. Other wired communication protocols, such as 
EtherCAT, require even more data lines. It would be 
preferable for the limb(s) building a structure to 
communicate wirelessly with a single base computer. 
Wireless power transmission could be explored, although it 
would likely come at a high cost to power efficiency. 

8. SUMMARY 
Limbi builds on a successful architecture first proven in 
space by Canadarm2. The testbed prototype, working in a 
planar space, has already been shown to be capable of 
autonomous pre-determined tasks. The hardware will be 
invaluable for the team’s future research work focused on 
integrating computer vision and higher levels of autonomy 
to enable rapid unaided in-space assembly. Additionally, the 
same hardware design will be used to build and demonstrate 
a first-of-a-kind Limboid system. Simultaneously, the team 
will use lessons learned from assembling and working with 
the hardware to build a refined prototype with cameras, 
tools, more robust docking mechanisms, and wireless 
communication. The long-term project goal is to prepare 
Limbi and Limboids for flight projects and eventual 
planetary applications.    
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